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Schema

Figure: A diagram of a typical terahertz time-domain spectrometer with an external magnetic
field in the Faraday geometry (B⃗ ⊥ 2DEG). There exist four quartz windows on either the
entrance or exit of the split coil magnet, which generate satellite pulses in addition to the
gallium arsenide 2DEG/Substrate. The ŷ − ẑ 2DEG sample coordinate system, as defined in
the manuscript, is indicated in this diagram. The polarization of the input terahertz pulse is
perpendicular to the page (x̂), while the transmitted pulse field is polarized in the x̂ − ŷ plane.
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ZnTe = Zinc Telluride
OAP = Off-axis parabolic mirror
PBS = Pellicle beam splitter
QWP = Quarter wave plate



Basic Process

• Pulse generation: Electric field of the 100fs pulse as a
Gaussian-modulated cosine is generated by Ti:Sapphire laser.

• Optical rectification: THz polarization is parallel to the
incoming laser beam’s polarization, generating a THz pulse due
to second order non-linearity by optical rectification in a ZnTe
crystal, linearly polarized say along x̂.

• Under proper phase matching, results in the emission of a
coherent broadband spectrum with a bandwidth of approximately
∆ν = 0.8THz = 1

2πσ = c
2πd (nc − 1) that is centered near

ν0 = 0.5THz and has |E0| ∼ 10kV /m.
• Can be modeled using a Gaussian-modulated sine pulse:

E (t) = E0 · exp
(

−(t − t0)2

2σ2

)
· sin (2πν0(t − t0) + π)
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Basic Process

Induced by Landau quantization in 2DEG:
• Circular dichroism causes differential absorption or rotation of

the left- and right-circularly polarized components of the light,
which means that the polarization is affected by the material’s
magnetic-field-dependent properties (breaking of TRS).

• Birefringence (different refractive indices) causes a phase
difference between the orthogonal polarization components of
the pulse.

• hence, the transmitted pulse is elliptically polarized.
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Basic Process

• Linear electrooptic effect: A THz pulse changes ZnTe crystal’s
refractive index: ∆n(t) = nc · r41 · E (t), where r41 is the
non-zero electro-optic tensor.

• ZnTe crystals are cut along the (110) plane.
• Effective Pockel’s response is maximized when THz is polarized

along [001].
• Probe beam is at 45°, to the principal axes of the (110) plane.
• For our setup, [001] is aligned along ŷ for maximum Pockel’s

response.
• We measure this component for both ±Bext to ensure proper

alignment (100:1 polarization extinction ratio).
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THz Time Domain Waveforms

Figure: Terahertz time-domain waveforms taken in the high mobility 2DEG, E(t) for different
Decay lifetimes T2 in Bext = 1.25T . a and b are experimental data. c, d and e are simulations
for Ex , Ey at T2 = 0.5ps and Ey at T2 = 15.1ps respectively. (best fit for a and b).
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Coherence in 2DEG

• Bext is aligned in z-direction, perpedicular to 2DEG, causing
continuous energy spectrum of free electrons quantizes into
discrete energy levels known as Landau levels (LLs).

En = ℏωc(n + 1
2)

• Energy spacing, ∆E = ℏeB/m∗ a cyclotron frequency ωc = eBext
m∗ .

• THz is tuned to resonance with Landau energy spacing between
highest filled |n⟩ and |n + 1⟩ levels.

• Results in formation of coherent superposition of states.
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Coherence in 2DEG

• Superposition of states: A and B are complex coefficients that
evolve over time with well defined relative phase of wc
(coherence).

|ψ(t)⟩ = Ae−iEnt/ℏ |n⟩ + Be−iEn+1t/ℏ |n + 1⟩

• Dephasing: Due to Scattering events, Inhomogenity of Bext ,
and finite temperature, coherence is lost over time. Decay
lifetime T2 such that:

Ey (t) ∝ e−t/T2cos(ωct + ϕ)

• Hence need Low temperature and high mobility.
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Satellite Pulses

• finite thickness of the eight quartz magnet windows and gallium
arsenide substrate lead to formation of a series of satellite
terahertz pulses

• Delays determined by their thicknesses and the refractive index
of quartz or GaAs.

• Etalon effect (Fabry-Pérot) due to thin-film interference. We
take a subtrate with thickness 7.5 times wavelength of 1 thz.

• Small ∆t ≈ 15ps between the two pulses allows satellite pulse to
overlap with tail of previous oscillating field, leading to
interference.
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Solving for Satellite Pulses

• Introducing wedge: primary and satellite pulses travel with
different propagation vector directions, allowing seperation.

• Windowing: Crop time domain data behind satellite pulse before
using fft. Limited by frequency resolution of acquired data.

• Need TMM would allow analysis of long cyclotron decoherence
lifetimes

• Future application: Use of time-delayed satellite pulses is an
experimental method of coherent control of the quantum
superposition states.
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Defining basis

Due to eliptical polarization, in x − y plane of our original basis:

[x̂ , ŷ , ẑ ]

We define a new basis:
[σ̂+, σ̂−, ẑ ]

with,
σ̂± = 1√

2
(x̂ ± i ŷ)

And monochromatic components of the total electromagnetic field,
polarized in the x − y plane, can be written:

E⃗ (z , ν) = U(z , ν)σ̂+ + P(z , ν)σ̂−

H⃗(z , ν) = V (z , ν)σ̂+ − Q(z , ν)σ̂−
(1)
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Anisotropic Materials

• Anisotropic materials: exhibit different properties in different
directions like Birefringence and Circular dichroism.

• Dielectric tensor: ε̄ describes anisotropic materials with broken
TRS but no birefringence.

ε̄(z , ν) =

 εxx εxy 0
−εxy εxx 0

0 0 εzz

 ≡

εpp 0 0
0 εmm 0
0 0 εzz

 (2)

• εpp = εxx + iεxy and εmm = εyy − iεxy .
• εpp = εmm for isotropic materials with TRS, since, εxy = 0.
• µ̄ is diagonal matrix with all elements µ.
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Maxwell equations
Faraday’s and Ampere’s laws in the frequency domain:

∇ × E (z , ν) = +i2πνµ(z , ν)H(z , ν)
∇ × H(z , ν) = −i2πνϵ(z , ν)E (z , ν)

(3)

This when applied to (1) gives:
dU
dz = −2πνµV

dV
dz = +2πνϵU

dP
dz = +2πνµQ

dQ
dz = −2πνϵP

(4)

This shows U and V (σ̂+component) propogate independent of P and
Q (σ̂−component).
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Propogation

Figure: Propagation of a normally incident electromagnetic wave through an arbitrary stratified
medium with l layers located at z ∈ [z0, z1 · · · zl−1, zl ] with Admittance Yj . 2DEG is Y1 and
GaAs substrate is Y2.
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Propogating Waves

For a layer zj ≤ z ≤ zj+1, the solution to the (4) is:

P(z) = P(zj) cos [κ−(z − zj)] + Q(zj)
{

+Y −1
− sin [κ−(z − zj)]

}
Q(z) = Q(zj) cos [κ−(z − zj)] + P(zj)

{
−Y −1

− sin [κ−(z − zj)]
}

U(z) = U(zj) cos [κ+(z − zj)] + V (zj)
{

−Y −1
+ sin [κ+(z − zj)]

}
V (z) = V (zj) cos [κ+(z − zj)] + U(zj) {+Y+ sin [κ+(z − zj)]}

(5)

Where Admittance is given by Y+ =
√
εppµ−1, Y− =

√
εmmµ−1 and

complex propogation vector magnitudes κ+ = 2πν√
εppµ,

κ− = 2πν√
εmmµ.
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Characterstic Matrix Method

Lets write components of the electromagnetic wave in σ̂±:

Q+(z , ν) =
[

U(z , ν)
V (z , ν)

]
Q−(z , ν) =

[
P(z , ν)
Q(z , ν)

]
(6)

If both Q± are known at zj , the Q± at zj+1 = zj + d can be found
using,

Q±(zj , ν) = M̄±,jQ±(zj+1, ν) (7)

with propogation is described by

M̄±,j =
[

cos(κ±d) −Y −1
± sin(κ±d)

−Y± sin(κ±d) cos(κ±d)

]
(8)

16 / 28



Total Transfer matrix

We could define total transfer matrix M̄±,T such that it is product of
all individual transfer matrices:

M̄±,T = M̄±,1M̄±,2 · · · M̄±,l

=
[
A± B±
C± D±

]

Where at z < z0 before hitting interface is descibed by (1) with
superposition of incident and reflected field.
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Total Transfer matrix

We also get following relations for our two layer approximation as:

A± = sinφ± sin θ − Y −1
±,1Y2 cosφ± cos θ

B± = ±
[
Y −1

2 cos θ sinφ± + Y −1
±,1 cosφ± sin θ

]
C± = ∓ [Y2 cos θ sinφ± + Y±,1 cosφ± sin θ]
D± = sinφ± sin θ − Y±,1Y −1

2 cosφ± cos θ

(9)

Where φ± = κ±,1d and θ = κ2L. Remember, Y+ =
√
εppµ−1,

Y− =
√
εmmµ−1 and κ+ = 2πν√

εppµ, κ− = 2πν√
εmmµ.
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Finding Permittivity

For cyclotron resonance-active polarization σ̂+, the susceptibility is

χ̄(ν) = χ0
i − 2π(ν − νCR)T2

1 + 4π2(ν − νCR)2T 2
2
,

with imaginary and real parts describing circular dichroism and
birefringence. The permittivity is

εpp = εb + (1 + χ̄(ν))ε0.

Selection rules enforce ∆m = 1, allowing σ̂+ (m = 1) to couple
|n⟩ → |n + 1⟩. σ̂− (m = −1) cannot, so

εmm = εb.
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Transmission Matrix

t+ ≡ Ut(zℓ)
Ui(z0) (10a)

t− ≡ Pt(zℓ)
Pi(z0) (10b)

Boundary Conditions:
• At input: E (z0) = Ei + Er , H(z0) = Yi(Ei − Er ).
• At output: E (zℓ) = Et , H(zℓ) = YtEt .

Using matrix propagation, the field relations yield:[
Ei + Er

Yi(Ei − Er )

]
= M±,T

[
Et

YtEt

]
.
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Transmission Matrix

Solving for Er and t±, the two linear equations give:

t± = 2Yi
(C± + D±Yt) + Yi(A± + B±Yt)

.

Factor out Y −1
i , giving the field transmission coefficient for the σ̂±

component is:

t±(ν) = 2
(A± + YtY −1

i D±) ± i(Y −1
i C± − YtB±)

(11)
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Our Simulation Result

(a) Generated (b) Recovered

Figure: Generated and Recovered E(t).
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Transfer matrix method for precise
determination of thicknesses in a 150-ply

polyethylene composite material
Reference: [Palka et al., 2015]



Material

Figure: 154 plies of average thickness 61 ± 7µm refractive index nc = 1.521 + i0.002, i.e
birefringence ∆n = 0.04.
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Result

Figure: Waveform reflected from the sample - measured and simulated
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The reflection of a terahertz (THz) pulse from a multilayer system is
described using transfer matrices. The interface matrix between the
i-th and (i + 1)-th layers:

Di ,j = 1
tij

[
1 rij
rij 1

]
(10)

where rij and tij are the Fresnel coefficients.
The propagation matrix for the i-th layer:

Pi(ω) =

exp
(

iωNi di
c

)
0

0 exp
(
− iωNi di

c

) (11)

where ω is the angular frequency, Ni is the refractive index, di is the
thickness, and c is the speed of light.
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The total transfer matrix:

Mtotal(ω) =
k∏

i=0
Pi(ω) · Di ,i+1 =

[
M11(ω) M12(ω)
M21(ω) M22(ω)

]
(12)

The reflection coefficient:

R(ω) = M21(ω)
M11(ω) (13)

The reflected THz signal:

Er (t) = F −1 [R(ω) · F [E0(t)]] (14)

where F denotes the Fourier transform.
The time-domain fitting error function:

QERR(d1, . . . , dk) =
∑

t
|signmeas(t) − signsim(d1, . . . , dk , t)| (15)
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