Cyclotron Resonance Spectroscopy in a High Mobility Two-Dimensional Electron Gas Using Characteristic Matrix Methods

David J. Hilton

(Department of Physics, The University of Alabama at Birmingham, Birmingham, AL)

Presentation by: Abhay Saxena

March 18, 2025

Reference: [Hilton, 2012]

Schema

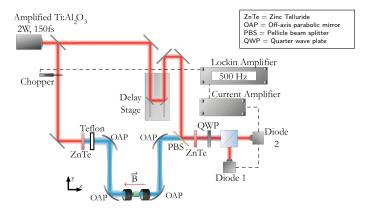


Figure: A diagram of a typical terahertz time-domain spectrometer with an external magnetic field in the Faraday geometry ($\vec{B} \perp 2DEG$). There exist four quartz windows on either the entrance or exit of the split coil magnet, which generate satellite pulses in addition to the gallium arsenide 2DEG/Substrate. The $\hat{y} - \hat{z}$ 2DEG sample coordinate system, as defined in the manuscript, is indicated in this diagram. The polarization of the input terahertz pulse is perpendicular to the page (\hat{x}), while the transmitted pulse field is polarized in the $\hat{x} - \hat{y}$ plane.

Basic Process

- Pulse generation: Electric field of the 100fs pulse as a Gaussian-modulated cosine is generated by Ti:Sapphire laser.
- Optical rectification: THz polarization is parallel to the incoming laser beam's polarization, generating a THz pulse due to second order non-linearity by optical rectification in a ZnTe crystal, *linearly polarized say along* x̂.
- Under proper phase matching, results in the emission of a coherent broadband spectrum with a bandwidth of approximately $\Delta \nu = 0.8\,THz = \frac{1}{2\pi\sigma} = \frac{c}{2\pi d}(n_c-1) \text{ that is centered near}$ $\nu_0 = 0.5\,THz \text{ and has } |E_0| \sim 10\,kV/m.$
- Can be modeled using a Gaussian-modulated sine pulse:

$$E(t) = E_0 \cdot \exp\left(-rac{(t-t_0)^2}{2\sigma^2}
ight) \cdot \sin\left(2\pi
u_0(t-t_0) + \pi
ight)$$

Basic Process

Induced by Landau quantization in 2DEG:

- Circular dichroism causes differential absorption or rotation of the left- and right-circularly polarized components of the light, which means that the polarization is affected by the material's magnetic-field-dependent properties (breaking of TRS).
- **Birefringence** (different refractive indices) causes a phase difference between the orthogonal polarization components of the pulse.
- hence, the transmitted pulse is elliptically polarized.

Basic Process

- Linear electrooptic effect: A THz pulse changes ZnTe crystal's refractive index: $\Delta n(t) = n_c \cdot r_{41} \cdot E(t)$, where r_{41} is the non-zero electro-optic tensor.
- ZnTe crystals are cut along the (110) plane.
- Effective Pockel's response is maximized when THz is polarized along [001].
- Probe beam is at 45°, to the principal axes of the (110) plane.
- For our setup, [001] is aligned along \hat{y} for maximum Pockel's response.
- We measure this component for both $\pm B_{\text{ext}}$ to ensure proper alignment (100:1 polarization extinction ratio).

THz Time Domain Waveforms

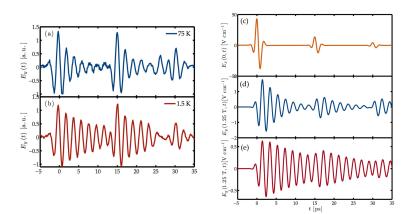


Figure: Terahertz time-domain waveforms taken in the high mobility 2DEG, E(t) for different Decay lifetimes T_2 in $B_{\rm ext}=1.25\,T$. a and b are experimental data. c, d and e are simulations for $E_{\rm X}$, $E_{\rm Y}$ at $T_2=0.5p{\rm s}$ and $E_{\rm Y}$ at $T_2=15.1p{\rm s}$ respectively. (best fit for a and b).

Coherence in 2DEG

• B_{ext} is aligned in z-direction, perpedicular to 2DEG, causing continuous energy spectrum of free electrons quantizes into discrete energy levels known as Landau levels (LLs).

$$E_n = \hbar\omega_c(n + \frac{1}{2})$$

- Energy spacing, $\Delta E = \hbar e B/m^*$ a cyclotron frequency $\omega_c = \frac{e B_{\rm ext}}{m^*}$.
- THz is tuned to resonance with Landau energy spacing between highest filled $|n\rangle$ and $|n+1\rangle$ levels.
- Results in formation of coherent superposition of states.

Coherence in 2DEG

• Superposition of states: A and B are complex coefficients that evolve over time with well defined relative phase of w_c (coherence).

$$|\psi(t)\rangle = Ae^{-iE_{n}t/\hbar}|n\rangle + Be^{-iE_{n+1}t/\hbar}|n+1\rangle$$

• **Dephasing:** Due to Scattering events, Inhomogenity of B_{ext} , and finite temperature, coherence is lost over time. Decay lifetime T_2 such that:

$$E_y(t) \propto e^{-t/T_2} cos(\omega_c t + \phi)$$

• Hence need Low temperature and high mobility.

Satellite Pulses

- finite thickness of the eight quartz magnet windows and gallium arsenide substrate lead to formation of a series of satellite terahertz pulses
- Delays determined by their thicknesses and the refractive index of quartz or GaAs.
- Etalon effect (Fabry-Pérot) due to thin-film interference. We take a subtrate with thickness 7.5 times wavelength of 1 thz.
- Small $\Delta t \approx 15 ps$ between the two pulses allows satellite pulse to overlap with tail of previous oscillating field, leading to interference.

Solving for Satellite Pulses

- **Introducing wedge:** primary and satellite pulses travel with different propagation vector directions, allowing seperation.
- **Windowing:** Crop time domain data behind satellite pulse before using fft. Limited by frequency resolution of acquired data.
- Need TMM would allow analysis of long cyclotron decoherence lifetimes
- Future application: Use of time-delayed satellite pulses is an experimental method of coherent control of the quantum superposition states.

Defining basis

Due to eliptical polarization, in x - y plane of our original basis:

$$[\hat{x},\hat{y},\hat{z}]$$

We define a new basis:

$$[\hat{\sigma}_+,\hat{\sigma}_-,\hat{z}]$$

with,

$$\hat{\sigma_{\pm}} = \frac{1}{\sqrt{2}} (\hat{x} \pm i\hat{y})$$

And monochromatic components of the total electromagnetic field, polarized in the x-y plane, can be written:

$$\vec{E}(z,\nu) = U(z,\nu)\hat{\sigma}_{+} + P(z,\nu)\hat{\sigma}_{-}$$

$$\vec{H}(z,\nu) = V(z,\nu)\hat{\sigma}_{+} - Q(z,\nu)\hat{\sigma}_{-}$$
(1)

Anisotropic Materials

- Anisotropic materials: exhibit different properties in different directions like Birefringence and Circular dichroism.
- **Dielectric tensor:** $\bar{\varepsilon}$ describes anisotropic materials with broken TRS but no birefringence.

$$\bar{\varepsilon}(z,\nu) = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0 \\ -\varepsilon_{xy} & \varepsilon_{xx} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{pmatrix} \equiv \begin{bmatrix} \varepsilon_{pp} & 0 & 0 \\ 0 & \varepsilon_{mm} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$
(2)

- $\varepsilon_{pp} = \varepsilon_{xx} + i\varepsilon_{xy}$ and $\varepsilon_{mm} = \varepsilon_{yy} i\varepsilon_{xy}$.
- $\varepsilon_{pp} = \varepsilon_{mm}$ for isotropic materials with TRS, since, $\varepsilon_{xy} = 0$.
- $\bar{\mu}$ is diagonal matrix with all elements μ .

Maxwell equations

Faraday's and Ampere's laws in the frequency domain:

$$\nabla \times E(z,\nu) = +i2\pi\nu\mu(z,\nu)H(z,\nu)$$

$$\nabla \times H(z,\nu) = -i2\pi\nu\epsilon(z,\nu)E(z,\nu)$$
(3)

This when applied to (1) gives:

$$\frac{dU}{dz} = -2\pi\nu\mu V$$

$$\frac{dV}{dz} = +2\pi\nu\epsilon U$$

$$\frac{dP}{dz} = +2\pi\nu\mu Q$$

$$\frac{dQ}{dz} = -2\pi\nu\epsilon P$$
(4)

This shows U and V ($\hat{\sigma}_+$ component) propogate independent of P and Q ($\hat{\sigma}_-$ component).

Propogation

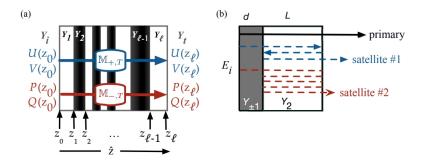


Figure: Propagation of a normally incident electromagnetic wave through an arbitrary stratified medium with I layers located at $z \in [z_0, z_1 \cdots z_{l-1}, z_l]$ with Admittance Y_j . 2DEG is Y_1 and GaAs substrate is Y_2 .

Propogating Waves

For a layer $z_j \le z \le z_{j+1}$, the solution to the (4) is:

$$P(z) = P(z_{j}) \cos \left[\kappa_{-}(z - z_{j})\right] + Q(z_{j}) \left\{ + Y_{-}^{-1} \sin \left[\kappa_{-}(z - z_{j})\right] \right\}$$

$$Q(z) = Q(z_{j}) \cos \left[\kappa_{-}(z - z_{j})\right] + P(z_{j}) \left\{ - Y_{-}^{-1} \sin \left[\kappa_{-}(z - z_{j})\right] \right\}$$

$$U(z) = U(z_{j}) \cos \left[\kappa_{+}(z - z_{j})\right] + V(z_{j}) \left\{ - Y_{+}^{-1} \sin \left[\kappa_{+}(z - z_{j})\right] \right\}$$

$$V(z) = V(z_{j}) \cos \left[\kappa_{+}(z - z_{j})\right] + U(z_{j}) \left\{ + Y_{+} \sin \left[\kappa_{+}(z - z_{j})\right] \right\}$$
(5)

Where Admittance is given by $Y_+ = \sqrt{\varepsilon_{pp}\mu^{-1}}$, $Y_- = \sqrt{\varepsilon_{mm}\mu^{-1}}$ and complex propogation vector magnitudes $\kappa_+ = 2\pi\nu\sqrt{\varepsilon_{pp}\mu}$, $\kappa_- = 2\pi\nu\sqrt{\varepsilon_{mm}\mu}$.

Characterstic Matrix Method

Lets write components of the electromagnetic wave in $\hat{\sigma}_{\pm}$:

$$Q_{+}(z,\nu) = \begin{bmatrix} U(z,\nu) \\ V(z,\nu) \end{bmatrix} \qquad Q_{-}(z,\nu) = \begin{bmatrix} P(z,\nu) \\ Q(z,\nu) \end{bmatrix}$$
(6)

If both Q_{\pm} are known at z_j , the Q \pm at $z_{j+1}=z_j+d$ can be found using,

$$Q_{\pm}(z_{j},\nu) = \bar{M}_{\pm,j}Q_{\pm}(z_{j+1},\nu)$$
 (7)

with propogation is described by

$$\bar{M}_{\pm,j} = \begin{bmatrix} \cos(\kappa_{\pm}d) & -Y_{\pm}^{-1}\sin(\kappa_{\pm}d) \\ -Y_{\pm}\sin(\kappa_{\pm}d) & \cos(\kappa_{\pm}d) \end{bmatrix}$$
(8)

Total Transfer matrix

We could define total transfer matrix $\bar{M}_{\pm,T}$ such that it is product of all individual transfer matrices:

$$\bar{M}_{\pm,T} = \bar{M}_{\pm,1}\bar{M}_{\pm,2}\cdots\bar{M}_{\pm,I}
= \begin{bmatrix} A_{\pm} & B_{\pm} \\ C_{\pm} & D_{\pm} \end{bmatrix}$$

Where at $z < z_0$ before hitting interface is descibed by (1) with superposition of incident and reflected field.

Total Transfer matrix

We also get following relations for our two layer approximation as:

$$A_{\pm} = \sin \varphi_{\pm} \sin \theta - Y_{\pm,1}^{-1} Y_{2} \cos \varphi_{\pm} \cos \theta$$

$$B_{\pm} = \pm \left[Y_{2}^{-1} \cos \theta \sin \varphi_{\pm} + Y_{\pm,1}^{-1} \cos \varphi_{\pm} \sin \theta \right]$$

$$C_{\pm} = \mp \left[Y_{2} \cos \theta \sin \varphi_{\pm} + Y_{\pm,1} \cos \varphi_{\pm} \sin \theta \right]$$

$$D_{\pm} = \sin \varphi_{\pm} \sin \theta - Y_{\pm,1} Y_{2}^{-1} \cos \varphi_{\pm} \cos \theta$$

$$(9)$$

Where
$$\varphi_{\pm} = \kappa_{\pm,1} d$$
 and $\theta = \kappa_2 L$. Remember, $Y_+ = \sqrt{\varepsilon_{pp} \mu^{-1}}$, $Y_- = \sqrt{\varepsilon_{mm} \mu^{-1}}$ and $\kappa_+ = 2\pi \nu \sqrt{\varepsilon_{pp} \mu}$, $\kappa_- = 2\pi \nu \sqrt{\varepsilon_{mm} \mu}$.

Finding Permittivity

For cyclotron resonance-active polarization $\hat{\sigma}_+$, the susceptibility is

$$\bar{\chi}(\nu) = \chi_0 \frac{i - 2\pi(\nu - \nu_{CR})T_2}{1 + 4\pi^2(\nu - \nu_{CR})^2 T_2^2},$$

with imaginary and real parts describing circular dichroism and birefringence. The permittivity is

$$\varepsilon_{pp} = \varepsilon_b + (1 + \bar{\chi}(\nu))\varepsilon_0.$$

Selection rules enforce $\Delta m=1$, allowing $\hat{\sigma}_+$ (m=1) to couple $|n\rangle \to |n+1\rangle$. $\hat{\sigma}_-$ (m=-1) cannot, so

$$\varepsilon_{mm} = \varepsilon_b$$
.

Transmission Matrix

$$t_{+} \equiv \frac{U_{t}(z_{\ell})}{U_{i}(z_{0})} \tag{10a}$$

$$t_{-} \equiv \frac{P_t(z_\ell)}{P_i(z_0)} \tag{10b}$$

Boundary Conditions:

- At input: $E(z_0) = E_i + E_r$, $H(z_0) = Y_i(E_i E_r)$.
- At output: $E(z_{\ell}) = E_t$, $H(z_{\ell}) = Y_t E_t$.

Using matrix propagation, the field relations yield:

$$\begin{bmatrix} E_i + E_r \\ Y_i(E_i - E_r) \end{bmatrix} = \overline{\mathbb{M}}_{\pm,T} \begin{bmatrix} E_t \\ Y_t E_t \end{bmatrix}.$$

Transmission Matrix

Solving for E_r and t_{\pm} , the two linear equations give:

$$t_{\pm} = \frac{2Y_i}{(C_{\pm} + D_{\pm}Y_t) + Y_i(A_{\pm} + B_{\pm}Y_t)}.$$

Factor out Y_i^{-1} , giving the field transmission coefficient for the $\hat{\sigma}_{\pm}$ component is:

$$t_{\pm}(\nu) = \frac{2}{(A_{\pm} + Y_t Y_i^{-1} D_{\pm}) \pm i(Y_i^{-1} C_{\pm} - Y_t B_{\pm})}$$
(11)

Our Simulation Result

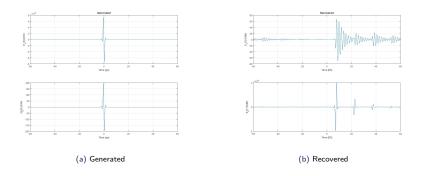


Figure: Generated and Recovered E(t).

Transfer matrix method for precise determination of thicknesses in a 150-ply polyethylene composite material

Reference: [Palka et al., 2015]

Material

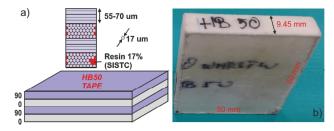


Figure: 154 plies of average thickness 61 \pm $7\mu m$ refractive index $n_{\rm C}=1.521+i0.002$, i.e birefringence $\Delta n=0.04$.

Result

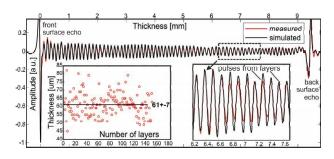


Figure: Waveform reflected from the sample - measured and simulated

The reflection of a terahertz (THz) pulse from a multilayer system is described using transfer matrices. The interface matrix between the i-th and (i + 1)-th layers:

$$D_{i,j} = \frac{1}{t_{ij}} \begin{bmatrix} 1 & r_{ij} \\ r_{ij} & 1 \end{bmatrix} \tag{10}$$

where r_{ij} and t_{ij} are the Fresnel coefficients. The propagation matrix for the *i*-th layer:

$$P_{i}(\omega) = \begin{bmatrix} \exp\left(\frac{i\omega N_{i}d_{i}}{c}\right) & 0\\ 0 & \exp\left(-\frac{i\omega N_{i}d_{i}}{c}\right) \end{bmatrix}$$
(11)

where ω is the angular frequency, N_i is the refractive index, d_i is the thickness, and c is the speed of light.

The total transfer matrix:

$$M_{\text{total}}(\omega) = \prod_{i=0}^{k} P_i(\omega) \cdot D_{i,i+1} = \begin{bmatrix} M_{11}(\omega) & M_{12}(\omega) \\ M_{21}(\omega) & M_{22}(\omega) \end{bmatrix}$$
(12)

The reflection coefficient:

$$R(\omega) = \frac{M_{21}(\omega)}{M_{11}(\omega)} \tag{13}$$

The reflected THz signal:

$$E_r(t) = F^{-1} \left[R(\omega) \cdot F[E_0(t)] \right] \tag{14}$$

where F denotes the Fourier transform.

The time-domain fitting error function:

$$QERR(d_1, \dots, d_k) = \sum_{t} |sign_{meas}(t) - sign_{sim}(d_1, \dots, d_k, t)| \quad (15)$$

Discussed References

Hilton, D. J. (2012).

Cyclotron resonance spectroscopy in a high mobility two dimensional electron gas using characteristic matrix methods.

Opt. Express, 20(28):29717-29726.

Palka, N., Krimi, S., Ospald, F., Beigang, R., and Miedzinska, D. (2015).

Transfer matrix method for precise determination of thicknesses in a 150-ply polyethylene composite material.

In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pages 1–2.