SUMMER PROJECT REPORT

PAYMEN
CURREN
SYSTEM

NTEGRATION OF

GATEWAY IN

M

SN

UNDER GUIDANCE OF DR. DWAIPAYAN ROY

SUBMITTED BY: ABHAY SAXENA

IISER KOLKATA
&5

Indian Institute of Science Education and Research Kolkata

| am writing to express my sincere gratitude to

Dr. Dwaipayan Roy and Nimish Sharma for their
invaluable contributions to my summer project report.
Dr. Roy's expertise and suggestions were essential to
the completion of this project, and Nimish's
contribution was essential to its success. Their
feedback has been invaluable. Their contributions
have made this project.

~Abhay Saxena

Contents

1. Introduction To Payment Gateway Integration
1.1. Aim Of This Project
1.2. Significance
1.3. Objectives
2. Languages And Frameworks
2.1. Overview Of Tools used
2.1.1. Model-view-template architecture (Django)
2.2. Selecting Gateway
3. Procedure
3.1. Overview Of Overall System
3.1.1. Fundamental schematic
3.1.2. Project folder structure
3.2. Landing Page
3.2.1. Frontend
3.2.1.1. Fundamental Html
3.2.1.2. Css Styling
3.2.1.3. Elements With Javascript
3.3. Redirecting Page
3.3.1. Backend
3.3.1.1. Accepting Post Requests
3.3.1.2. Cashfree Order Creation
3.3.1.3. Mobikwik Order Creation
3.3.2. Frontend
3.3.2.1. Fundamental Warning
3.3.2.2. Cashfree Sdk
3.4. Gateway
3.5. Verification
3.5.1. Api Endpoint For Payment Verification
3.5.2. Database Management
3.5.3. Crediting To User’s Mess Card
4. Conclusion
4.1. Summary
4.2. Skills Acquired
5. Challenges and Ways to Overcome

Section 1

Introduction to Payment Gateway
Integration

1.1 Aim Of This Project

The findings and results of a project aimed at learning how to create a
frontend web page using frontend web development (HTML, CSS, JS) and
backend python-based server framework Django are presented in this
Summer Project Report. Additionally, a payment gateway is integrated,
enabling wallet top-up capabilities. The project's goals, approaches,
difficulties, outcomes, and learned skills are described in this report.

The report's opening emphasises the value of integrating a payment
gateway and developing a frontend webpage for the website. It
emphasises the significance of these abilities in creating valuable and
approachable online apps. Creating a frontend webpage and integrating a
payment gateway are described in an outline of the project's goals. The
paper then reviews the project's procedures, including the coding and
experimental methods, learning strategies, and tools employed.

The project's technologies are comprehensively covered, concentrating on
HTML, CSS, JS, and Django. The function and importance of each
technology in web development are presented to provide a basic grasp.
Step-by-step instructions are provided for the development process,
which covers several topics, including frontend design, which includes
HTML structure and CSS styling, the construction of interactive features
using JavaScript, and integrating a payment gateway for wallet top-up
capability.

The paper also discusses the difficulties found during the project and how
to solve them. It considers the essential lessons discovered through these
encounters. The project's outcomes and accomplishments are assessed,
along with the generated frontend webpage's functionality, usability, and
responsiveness. The successful wallet top-up feature connection with the
payment gateway is emphasised and explored.

It offers recommendations for extra study material, skill-building
exercises in frontend web development and payment gateway integration,
and additional features or functionalities that could be included.

This Summer Project Report thoroughly reviews the project's goals,
approaches, difficulties, outcomes, and learned skills. It highlights the
practical implementations of these abilities. It is a valuable resource for
learning how to design a frontend webpage and integrate a payment
gateway for wallet top-up functionality.

1.2 Significance

The significance of payment gateway integration in the context of the
student mess wallet recharge process cannot be overstated. By
incorporating a payment channel, students may quickly replace their
trash wallets, leading to a more convenient and streamlined experience.
This relationship benefits the person in charge of entries in the mess
wallet and the pupils.

Students can quickly recharge their accounts thanks in part to the
payment gateway link. In the past, students had to manually travel to the
mess office or speak with the appropriate person to make cash payments
and update their wallet balances. This process is time-consuming and
inconvenient, especially when several students must recharge their
wallets simultaneously during busy periods. However, thanks to the
payment gateway connection, students can use various payment options
like credit/debit cards or Internet banking to replenish their trash wallets
online. Giving students a hassle-free and straightforward way to top off
their balances anytime they want, from anywhere, removes the need for
in-person visits and reduces wait times.

The process of filling out entries for the person in charge of managing the
balances of numerous wallets is also made more accessible by adding a
payment method. The person in control had to manually update wallet
balances, monitor cash transactions, and precisely record each student's
recharge before this. This manual process required much time and was
prone to human error and inconsistency. Once a student makes an online
payment, the system might instantaneously update wallet balances if a
payment gateway is integrated.

The cost-effectiveness of integrating a payment gateway is enhanced by
several factors. First, it does away with the necessity for managing
currency transactions, which may be risky and time-consuming.

Switching to online payments significantly decreases the risks associated
with handling and managing cash. Setting up and maintaining a payment
gateway is typically less expensive than manually handling cash. As the
costs of the physical infrastructure, human resources, and cash
management are drastically reduced, the institution will see long-term
cost reductions.

1.3 Objectives

We first list out the purpose of this project to assign with some objectives.

e To evaluate the payment gateway integration's
usability,functionality, and affordability.

e To get beneficial knowledge in integrating payment gateways and
web development that can be applied to future projects.

e To design a responsive, functional, and intuitive user interface for a
front-end website.

e Automate the process of updating wallet balances, and integrate the
payment gateway.
To master web development in Django, HTML, CSS, and JS.
To become familiar with wallet features at a large scale and
understand the current mess system.

e The user experience is enhanced by giving students access to a
quick and secure online wallet recharge mechanism.

Our priority should be creating an aesthetically pleasing, user-friendly
frontend webpage with a visually appealing design and straightforward
navigation. Hence we should use responsive design concepts to offer a
consistent user experience across devices and screen sizes. We can also
reduce loading times by boosting the performance of the frontend web
page and the speed of payment gateway integration. We Shall also create
interactive JavaScript components to increase user involvement and
provide dynamic functionality. Including a reputable payment processor
that allows a variety of payment methods for wallet top-ups would
provide students with a safer and easier experience. Allowing for
real-time, faultless synchronisation of wallet balance and payment
gateway updates would provide the advantage of automation to students.
We should provide dependable error management and validation methods
to ensure exact and secure payment transactions. Ascertain that the
frontend webpage is compatible with all major browsers and mobile
devices.

Section 2

Languages And Frameworks

2.1 Overview Of Tools Used

Before generating, we used Hypertext markup language (HTML) to create
specific instructions for a web page's design, type, format, structure, and
makeup. It is mainly used to make the essential structure of a page
accessible to the user and to assign specific markups to each element for
future reference by other tools. HTML is used to assign our input
components and names. The same is true for all other information,
buttons, etc.

CSS (Cascading Style Sheets) is also used in the project to improve the
look of a web page. By including meaningful CSS styles, you may make
your page more appealing and enjoyable to read and utilise for the end
user.

JavaScript is the programming language used for our portal's web browser
rendered section. The Document Object Model API (DOM) allows you to
alter any element in any way you wish. When integrating a payment
gateway, it is critical to facilitate user interaction and input validation. It
allows for the management of payment gateway replies, such as success or
failure signals, and the initiation of further actions in response to these
responses.

Python, on the other hand, is the programming language used for the
backend. The backend is the website's server side. It saves and organises
data while ensuring that everything on the client side of the website
functions properly. It is a website section you cannot view or interact
with. To put it simply, for our servers to launch a website on the World
Wide Web, we want a web framework meant to facilitate the construction
of online applications such as web services, web resources, and web APIs
and is thus typically approved by most browsers. Django is a free and
open-source Python-based web framework that we are utilising in our
project and was previously used for the mess portal's web platform.
Django offers essential features for managing form submissions,
processing payment requests, and securely interacting with the API of the
payment gateway provider. It follows a model-template-views
architectural pattern.

2.1.1 Model-view-template architecture

e A Modelis an object that defines the data structure of a Django
application. It is in charge of keeping the entire application's data
and provides numerous techniques for adding, updating, reading,
and deleting data from the database.

e AViewisan HTTP handler that accepts HTTP requests, processes
them, and returns the HTTP response. It uses Models to retrieve the
data needed to fulfil the request and Templates to render it on the
user interface. It can also dynamically generate an HTML page using
an HTML template and populate it with data from the model.

e A Template is a text file that defines the user interface's structure or
layout. The text file might be of any type; for example, HTML, XML
etc. CSS and JS are generally saved in static files.

2.2 Selecting Gateway

Several payment channels were considered, including PayTM, Razor Pay,
and SBI ePay. While most of them ask for a high price from the user, it is
crucial to emphasise that they must also provide excellent assistance and
documentation. This would allow for more secure development and
improved dispute resolution in the event of a botched recharge. Notably,
two of these gateways, Cashfree and Zaakpay (MobiKwik), stood out for
the reasons listed below and were chosen for the project.

Cashfree is a well-known payment gateway provider that provides safe
online transaction services. It accepts credit/debit cards, net banking, UPI,
and digital wallets as payment methods. Cashfree is known for its 0%
transaction fee on all UPI transactions, which eliminates the need for
additional fees for such payments. Cashfree also does not charge annual
or maintenance fees, assuring cost-effectiveness throughout the project.

Mobikwik is a well-known payment gateway noted for its simple Ul and
quick payment processing. It accepts credit/debit cards, net banking, UPI,
and digital wallets as payment methods. MobiKwik's 0% transaction charge
on UPI transactions adds to its appeal by lowering the costs associated
with such payments. Furthermore, Mobikwik has no annual or
maintenance costs, making it financially advantageous for the enterprise.

Section 3

Procedure

3.1 Overview of Overall System

Interact with Redirection
user to receive SDK to — Payment Portal g::t?ﬁgggn
params gateway

On pg pravides's domaan

ldY

UoREDJUEA,

. Payment
Order creation confirmation

Save Update
hisiory credil

Provide Payment and
Balance

session_id
e [s Datasheet

Described above is the entire workflow of the website.

The user supplies the portal with the roll number and the payment
amount. It sends the form to the order creation and redirection page as a
post request. The page sends a post request to the Cashfree/Mobikwik
servers to create a new order for the amount of money and roll no
(encoded in order_id), and the server responds with the session_id, which
can be used to create the payment instance associated with that order.

This session_id is sent from the backend page to

v credit the front end page, which serves as a waiting
> __pycache__ page and loads the SDK required to send an

encrypted request to the appropriate pg
website, which then sends the user to the
payment gateway.
~ home When a user completes payment on the pg
provider's website, the website is prompted by a
redirecting (waiting) page to return to a specific

@ settings.py

@ urls.py

> migrations

] : : :

apPPs-pY URL with the order id as a get request. The
@ models.py backend then utilises the order id to confirm the
@ views.py 2 payment, again using endpoint APIs with the

corresponding pg provider. In response, the

v templates . : .
website sends payment confirmation to our

> static backend, which recharges the wallet and
< cf_verify.html displays a message to the user with the status of
<> index.html the current transaction and recharge

confirmation. It also shows the user a history of

all recharges to that specific roll no.

¢ payment_zp.html Given on the left is the basic structure of the
db.sqlite3 project folder. (Files out of interest have been

edited off)

Views, Templates and models have already been

explained earlier. Along with these, we have got:

manage.py, which manages the admin, running of the server, updating

files etc.

Db.sqlite3 is our database file managed through models

Setting.py contains the paths to respective files, setting universal

environment and counting for created apps in Django.

Urls.py, on the other hand, will contain url patterns which shall be entered

in the browser and map them to their respective views, which will return

the files to be provided at those URLs to the client.

<& payment_cf.html

@ manage.py

3.2 Landing Page

3.2.1 Frontend

We create an index.html in templates folder and create a simple view in

view.py in home app created via manage.py startapp:
home view (request, *args, **kwargs):

render (request, "index.html", {})

Home_view will return the index.html, which is automatically fetched
from the templates by default. This is the most basic view, which returns
an HTML file to be rendered with no server-end processing. §} stands for
the content, i.e. the list of variables passed into index.html. In that case,
however, it is empty, i.e. no content is passed.

This view is then mapped to the home address via urls.py as,
django.contrib admin

django.urls path

home.views home view

urlpatterns = [

path('', home view, name='home'),

In order to test the website we can now access it through
http://127.0.0.1:8000/ i.e is a local host that can be used to host a django
server using manage.py runserver.

Python manage.py runserver

As we discussed, a view is a handler that accepts HTTP requests,
processes them, and returns the HTTP response. It uses Models to retrieve
the data needed to fulfil the request and Templates to render it on the user
interface. Thus, whatever the view returns will be visible to the user.

The index.html file contains a simple form,

This form is basic HTML for inputting
the amount for the recharge roll number
for the card to be recharged and the

- 0 choice of the portal. The aesthetic looks
are due to styling using CSS.

Recharge

Roll No: enterid
An example of a basic form is below. It

posts all the input data(only the amount
here) to domain /cfrdr/ (the redirect
server tagged order creation), decided by
action.

CashFree MobiKwik

method="POST" action="/cfrdr/"> {%csrf token%}

name="amt"type="number"

</form>

One may notice the tag:
{Scsrf token%}

http://127.0.0.1:8000/

All the tags in §{ 33 or {% %} are reserved for Django to provide an HTML
page with content (variables passed in the view from Python).

The CSRF (Cross-Site Request Forgery protection) middleware and
template tag offer simple protection against Cross-Site Request Forgeries.
This type of attack occurs when a malicious website has a link, a form
button, or some JavaScript that is meant to perform some action on your
website using the credentials of a logged-in user who visits the malicious
site in their browser.

Using javascript on the current page, we can limit the minimum and
maximum amount allowed along with the correct roll number. To do so, we

may simply limit the input amount via the following:
inamt = document.getElementById('ib') .value;

inamt = inamt.replace (=, T g
(inamt.length == 0) {
inamt = '0';
(parselnt (inamt) > 10000) {
inamt = inamt.substring (0, inamt.length - 1);
}i
And limit input roll number to correct format via:
rollcheck (str) {
code, i, len;

(str.length<7) {

r

0, len = str.length; i < len; i++) {
str.charCodeAt (i) ;
GG ==] 1 == 1) && !(code > 47 && code < 58)) {

’

' (code > 64 && code < 91)){

|| 1 == 6) && ! (code > 47 && code < 58)) {

This will make sure the roll number is in the format of two numbers
followed by two alphabets followed by three numbers.

When three criteria are met, i.e., a gateway is chosen, the roll number is
correct, and the amount is within the limit, we can simply enable the
button. L.e. apply three if statements and enable the button when all three
are satisfied.

3.3 Redirecting Page
3.3.1 Backend

Accepting Post Requests

We have to receive the post request from the landing page of /cfrdr/
(/zprdr/ for zaakpay) since, in order to create an order, we must have the
amount and order_id, which is the roll number combined with the current
date and time.

For cashfree

First we create the view as:
cf redirect view(request, *args, **kwargs):
And assign it to cfrdr in urls.py.
Now we see the first argument of this function is request. It is the request
needed, which could be post or get.
We read it using request.POST as,

cf redirect view(request, *args, **kwargs):

received = request.POST

xx*your python code goes herex**

render (request, "payment cf.html", my cont)
Now we create another post request from within the python i.e writing the
code of this view further,

url = "https://sandbox.c:

payload = {

"customer details": {

tomer id": received.get('roll'),

"customer phone": "88
y
"order id": str(received.get('roll')) + 'dt' +
dt.datetime.now () .strftime ("%d %m %Y %H %M %S"),

"order : {"return url":

s.liserkol.ac.in/?order id={order id}"},

amount": str(received.get ('amt')),
order currency": "INR",
"order note": str(received.get('roll'))

dt.datetime.now () .strftime ("%d/Sm/%Y

£}
09-01",

"content-type": "application/json"

response = requests.post (url, json=payload, headers=headers)

We must import requests library to python to send post request.
Thus, the response to the request is returned in variable response in the
last line.

Header contains respective secret client id and public client id
provided by cashfree.
received.get ('roll")
And similarly ‘amt’ both are received in the post request we saved in the
‘received’ variable earlier.
Payload is thus a json file of all information required for the required to
create the order.
The response returns a long string, which can be converted to json using
json.load() and contains ‘payment_session_id’ which is the only thing
required for now, to redirect the user to the payment page.

For mobikwik

The processing is slightly different but everything else is same
We define some parameters just as in cashfree

params = {"amount": amount, "merchantIdentifier": merchantIdentifier,

"orderId": orderId, "currency": currency,

"buyerEmail": buyerEmail}

And process the transaction using
processTransaction () :

requestParams = params
requestUrl = Config.ENVIRONMENT + Config.TRANSACTION API URL

checksumString = getChecksumString (requestParams)

checksum = calculateChecksum (ZAAKPAY SECRET KEY,

checksumString)

(requestUrl+"?"+checksumString+"checksum="+checksum)

The only thing different here is that order creation directly create the
request by encrypting the checksum string which is nothing but the
parameters, joined together with & just as in get requests. This checksum

1s integrated using calculateChecksum function which is as follows:
calculateChecksum(secret key, checksumString) :

secret key = bytes(secret key, "utf-8")

total params = bytes (checksumString, "utf-8

checksum = hmac.new(secret key, total params,

hashlib.sha256) .hexdigest ()

checksum

Uses an HMAC SHA-256 algorithm to calculate the checksum of the
data passed.

This final link generated by processTransaction can be used directly using
a simple post request with request parameters given in the function. You
need to post all the parameters with a checksum to the request URL, and
you can skip the frontend step, unlike cashfree, which uses a cashfree SDK
on the redirect page.

3.3.2 Frontend

Redirect frontend is nothing but simply the payment_cf.html in templates
returned by /cfrdr/ while we get the request, from backend and return it to
front end by passing it as a content (in a list in json form). So, we pass the
session_id and the order_id in the content and extract them in
payment_cf.html using {{ var 3} notion.

Fundamental warning

We give the client a simple, prominent warning not to close the tabs at any
point throughout the transaction. This is to avoid ending up in a situation
where the user has paid, but cashfree does not redirect to the verification
page on our server, which we shall discuss later. If any such issue happens,
we will not be informed of payment, and the mess card will not be
updated. However, money may be deducted.

Just a moment...

We're redirecting you to Cashfree Payment Gateway. Do Not Refresh the page.

This page features an amazing use of CSS @keyframe method for loading
bar animation.

"loading" {

from { left: 0; }

to { left: 400px; }
}
And applying

-webkit-animation: loading 2s infinite;

Three dots were placed on that blue line. Those three dots move from left
to right due to this animation, causing this loading bar effect without
javascript. Meanwhile, cashfree SDK loads and executes redirection in the
background.

Cashfree SDK

Cashfree SDK is loaded from an external script from their website
<script ></script>
checkoutOptions = {
paymentSessionId: '{{ psid }}',
returnUrl: "http://127.0.0.1:8000/verify/?orderid={{ oid
i
cashfree = Cashfree ({
mode: "sandbox"

) ;

cashfree.checkout (checkoutOptions)

The checkout function, upon execution, will redirect to the cash free
payment gateway. However, as discussed earlier, it requires session_id
provided by content, via {f psid 3} passed into the render via

cf redirect_view.

Return URL tells cashfree to return to the verification page after the
transaction. §§ oid 33 is order_id parameter.

A frontend redirect page is not required for Mobikwik.

3.4 Gateway

Client has been redirected to cashfree or mobikwik Payment Gateway and
pays the required sum or cancels the payment request. In either case, the
client will be redirected to verificationPage
http://127.0.0.1:8000/verify/?orderid=$$ oid %3.

The page will give a get request of order id to the verification page.

3.5 Verification

3.5.1 Api Endpoint For Payment Verification

Whatever the user’s actions are on the payment gateway are returned by
the gateway as a response to APIs provided by both Zaakpay and Cashfree.

Cashfree

cf verify view(request, *args, **kwargs):

rcd = request.GET

url = "https://sandbox.cashfree.com/pg/orders/" + \
rcd.get ('orderid') + "/payments"

headers = {
"accept": "application/json",

"x-client-id":

}
response = requests.get (url, headers=headers)

print (response.text)

my cont = {'oid': order id,

'amnt': amount,

'sts': status,

'hst': history to display
}

render (request, "cf verify.html", my cont)

Again the view is mapped to /verify/ in urls.py. One can see, that
verification of payment for cashfree is a simple POST request providing
three things,

e Orderid

e C(Client public key

e C(Client private key

And in return gets another json response. We store following from the json
in our database :

e Order amount

e Order_ id

e payment_status

and also return them to the rendered

page to give the user a response sheet
° confirming their payment and mess

recharge status immediately. Which

is displayed through basic html front
end.

:2000.0

12Ms222

The image shows the confirmation
Payment Successful.

Recharge credited to mess wallet page for a successful payment. It Also
displays the table of all previous
transactions done by that roll no.

date and time amount status pass into it as §§ hst 33 , which we will
13/07/2023 - 11:58:39 2000.0 SUCCESS .
discuss ahead how.

Mobikwik

Almost same parameters are asked for by Zaakpay,
e Checksum (needs to be recalculated)
e Order id
e merchent id

And returns a json with ‘payment_status’ to verify the status of the
particular transaction.

—_g"
—J

"merchantIdentifier": "mercent id",

"orderId": "order id",

"checksum": "checksum"

headers = {

1]

accept": "application/json",

"content-type": "application/x —form-urlenc

response = requests.post (url, data=payload, headers=headers)

print (response.text)

Just the same as cashfree.

3.5.2 Database Management

The next aim is to save the order ID amounts and payment status in a
database to keep track of the current balance and to prevent clashes in
case the verification page is reloaded or payment is not received but is
made on the gateway by the client.

For this, we use models.py. Remember, we discussed earlier that a
Model is an object that defines the data structure of a Django application.
It is in charge of keeping the entire application's data and provides
numerous techniques for adding, updating, reading, and deleting data
from the database. So, we create a new model calling it History, in

models.py:
django.db models

History (models.Model) :
order id = models.CharField(max length=255)
amount = models.CharField(max length=10)
cf id = models.CharField(max length=255)
status = models.CharField(max length=10)

Make sure to migrate the new models to server using,
Py manage.py makemigrations home

Py manage.py migrate

Migrations are Django's method of propagating model changes (adding a
field, deleting a model, etc.) into your database schema. They are intended
to be mostly automatic, but you will need to know when to make
migrations when to run them, and how to deal with frequent issues.

D_ja ﬂgO ad ministration WELCOME, ABHAY. VIEW SITE / CHANGE PASSWORD /LOG OUT ()

Home > Home > Historys > History object (204)

Change history
AUTHENTICATION AND AUTHORIZATION
HISTORY

Groups + Add History object (204)

L * Add Order id: 21M5001d113_07_2023_13_43_24

HOME : 10000

Historys
2147602324

SUCCESS

SAVE Save and add another Save and continue editing

The image above shows the Django admin page which is accessible
through http://127.0.0.1:8000/admin/ via a superuser. To create admin
user:

Py manage.py createsuperuser

Will guide one through all the steps to set up admin. Admin panel will
reflect all the models created in django, Like here is an example of our
successful history model.

3.5.3 Crediting To User’s Mess Card

To read to models, we use model.object.filter/all.values()
To write to models, we use model.object.create(params)

.models History
(History.objects.filter (order id=oid) .exists ()
History.objects.create (order id=oid, amount=amnt,

cf id=cfid, status=sts)
**xinsert to original database of mess credits, the new balance for

the roll number.

hst = History.objects.filter (order id startswith=o0id[0:7]) .values ()

http://127.0.0.1:8000/admin/

History.objects.filter(order_id=oid).exists() checks for pre-existing same
order id; do not double the entry. We must do so, or refreshing the page
would lead to double credit to the user's mess card.

Remember, hst, it was the variable passed to cf_verify.html. It contains the
list of all objects of the History model, order_id of which starts with the
roll number of the client (first seven characters of order_id list). This list
will also be printed on the verification response.

Section 4

Conclusion

4.1 Summary

e The project aimed to learn how to create a frontend web page using
HTML, CSS, and JS and integrate a payment gateway, enabling
wallet top-up capabilities.

e The project also aimed to learn how to stand up to industrial
security standards for APIs and requests backend(Django) for such
sensitive data.

e The project's goals were to evaluate the payment gateway
integration's usability, functionality, and affordability, gain
knowledge in integrating payment gateways and web development,
design a responsive, functional, and intuitive user interface,
automate updating wallet balances, and integrate the payment
gateway.

e The project successfully integrated the payment gateway and
created a functional and user-friendly frontend web page.

e The project faced some challenges, such as errors in the payment
gateway integration and difficulty styling the frontend web page.

e The project learned several skills: web development, payment
gateway integration, and error handling.

The Cashfree and Zaakpay payment gateway were utilised for the project,
which are well-known and trustworthy payment processors in India.

The frontend web page was created to be responsive, so it would appear
excellent on all platforms, including desktop computers, laptop
computers, tablets, and smartphones.

The project employed various JavaScript approaches to make the frontend
web page more dynamic and user-friendly.

Django was used backend to securely communicate with the frontend and
Cashfree servers while keeping private keys secure.

The project used Django's error-handling techniques to ensure the
frontend web page would continue functioning even if the payment
gateway integration failed.

Overall, the initiative intends to improve the student experience by
providing an easy and effective means to recharge wallets and boosting
administrative effectiveness and transaction management. It sets the way
for new advancements and demonstrates how adopting technology may
enhance operations and customer happiness.

4.2 Skills Acquired

Web development: Having a solid understanding of HTML, CSS, and
JavaScript, as well as the capacity to add interactive components
and build well-structured websites.

Secure integration: The project learned how to integrate a payment
gateway into a web page, and hence When dealing with sensitive
data, such as payment information, it is essential to be aware of
appropriate security standards.

Error handling: The project learned how to handle errors in the
payment gateway integration.Familiarity with browser developer
tools, logging mechanisms, and code review practices to aid
problem-solving and, most importantly, security measures.
Responsive design: The project learned to design a front-end web
page that looks good on all devices. Knowledge of responsive design
strategies allows for creating web pages that adapt to multiple
screen sizes and devices effortlessly.

Django and Database(SQLite3): Backend development expertise
using Django, a robust Python web platform. Modelling abilities,
database operations, and using Django's ORM for fast data
administration and retrieval.

JavaScript techniques: The project learned to use JavaScript to
make a more interactive and user-friendly front-end web page.

In addition to these technical skills, the project also learned several soft
skills, such as:

Problem-solving: The project had to solve several problems to
integrate the payment gateway and create a functional front-end
web page.

Communication: The project had to communicate with the project's
supervisor and other team members to get feedback and resolve
issues.

Time management: The project had to manage its time effectively to
complete it on time.

Section 5

Challenges and Ways to
Overcome

Learning Django: Learning Django from scratch in a limited period is
hard, but not highly. The language and framework are very
straightforward once referred to tutorials and proper documentation
provided by freecodecamp and w3schools.

Responsive Design: Designing for different browsers to render the
page similarly is challenging. Several components do not render the
same on Firefox. Designing the webpage as responsive and
adaptable to different screen sizes and devices presented a
challenge. Ensuring proper layout, font sizes, and image scaling for
various devices was challenging.

User Experience Optimization: Creating an aesthetically pleasing
and user-friendly design was challenging while balancing form
validation, error handling, and clear instructions.

Payment Gateway Integration: Due to the necessity to manage
secure communication, transaction processing, and error
management, integrating the chosen payment gateway (such as
Cashfree or Mobikwik) was undoubtedly a challenging undertaking.
Becoming familiar with the payment gateway's API documentation
and guaranteeing correct integration was challenging.

Testing and Debugging: It took much effort to conduct thorough
testing to find and fix functional, compatibility, or usability
problems. During the development and testing phases, issues
needed to be carefully analysed and problems needed to be solved.

Regarding the final point, Some fixes required to be done throughout the
project are,

Tinkering how to set up a primary Django server and run the first
view while creating the start app, defining paths in settings.py and
assigning urls.py URLs to specific views.

Getting to know strict industrial-grade security standards while
trying to request the pg servers for order creating and getting
continuous errors, requests being rejected for one thing or another.
Struggling with unupdated migrations and more importantly
unupdated static files. Initial original static files were being edited
and then python manage.py collectstatic --noinput --clear
Was run causing old files to replace new ones which were elsewhere.
Such issues are very common while working with any coding lang.

e Another error was encountered when the returned (response) JSON
by cashfree after verification of the done transaction returned a list
of JSONs and went unnoticed. To access the JSON, we must refer to
the 0th element of the list to look at the last transaction, which

possibly would be the successful one, if there is any.
json object = json.loads (response.text)

print (json object[0])

sts = json object[0].get ('payment status')

Is the syntax to fetch a particular element for a given response.
Other JSONs are previously done transactions in the same session,
which might have failed and thus did not redirect.

Provided solutions, along with Dr Dwaipayan Roy’s guidance, were
effective enough to allow the project to overcome these challenges and
many other challenges that were avoided before they could occur.

