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Section 1

Abstract

1.1 Objective
This report aims to perform a comprehensive and in-depth comparison of
three quantum algorithms, namely Variational Quantum Eigensolver
(VQE), Variational Quantum Deflation (VQD), and Projected Variational
Quantum Dynamics (p-VQD), all implemented in the Qiskit framework.
The primary objective is to rigorously evaluate, contrast, and gain insights
into the performance, efficiency, and applicability of each algorithm in
solving complex quantum chemistry problems, particularly focusing on
electronic structure calculations. The assessment encompasses various
quantum hardware and simulators available in Qiskit, enabling a thorough
investigation of the algorithms' capabilities under different computational
settings. By achieving a detailed understanding of the strengths and
limitations of VQE, VQD, and p-VQD, this study endeavours to assist
researchers, quantum enthusiasts, and industry professionals in making
informed decisions while choosing the most suitable quantum algorithms
for their specific quantum chemistry simulations and future quantum
computing endeavours.

1.2 Roadmap
In pursuit of the defined objective, the report proceeds as follows:

Introduction:
The report begins by providing an overview of the significance of
quantum algorithms in quantum chemistry simulations. It outlines the
importance of VQE, VQD, and p-VQD as promising candidates for tackling
electronic structure calculations.

Algorithm Principles:
Under this section, the fundamental principles of each algorithm, namely
VQE, VQD, and p-VQD, are explained in detail. This subheading sheds light
on their underlying concepts, mathematical foundations, and workflow.



Implementation and Setup:
We describe the implementation of the algorithms in the Qiskit
framework, along with the necessary setup to run them on quantum
hardware and simulators. This section also covers the selection criteria for
the quantum chemistry problems considered in the comparison.

Performance Evaluation:
To evaluate the algorithms, we assess their accuracy, convergence speed,
and resource requirements. This subheading also examines their
performance under the influence of noise and other error sources
commonly found in current quantum hardware.

Complexity and Scalability:
We analyze the complexity of implementing each algorithm in Qiskit,
providing insights into the programming efforts and expertise required.
Additionally, the report examines the scalability of VQE, VQD, and p-VQD
concerning the size and complexity of quantum chemistry problems they
can address.

Results and Discussion:
The section presents the comparative analysis of VQE, VQD, and p-VQD
based on the performance and scalability evaluations. We discuss the
strengths and limitations of each algorithm, providing a clear
understanding of their respective applicability and potential in real-world
quantum chemistry simulations.

Conclusion:
In the concluding part, we summarise the key findings of the comparison
and offer insights into the suitability of each algorithm for different
quantum chemistry use cases. The report concludes with a perspective on
the future prospects and potential advancements in the field of quantum
algorithms for solving electronic structure problems.

Through this comprehensive assessment, researchers, quantum
enthusiasts, and industry professionals will gain valuable insights into the
selection of appropriate quantum algorithms for their specific quantum
chemistry simulations.



Section 2

Introduction

2.1 Importance of VQE, VQD, and p-VQD
By utilising the power of quantum algorithms, quantum computing has
ushered in a time of previously unimaginable opportunities and the
potential to change entire sectors. Variational Quantum Eigensolver (VQE),
Variational Quantum Deflation (VQD), and Projected Variational Quantum
Dynamics (p-VQD) stand out among these ground-breaking algorithms for
their crucial roles in resolving complex issues that conventional
computers find difficult to handle effectively, i.e provide with the quantum
advantage and reduce the run time complexity.

Variational Quantum Eigensolver (VQE):

Its capacity to determine the ground state energy of molecular systems
makes it extremely valuable.
Based in the Chebyshev's inequality you would need to do O(1/ϵ2) to get
within ϵ accuracy for each circuit in your experiment.

1. Applicability to Quantum Chemistry: For the purpose of
understanding molecular characteristics and reactions, electronic
structure calculations in particular are critical, and VQE is
specifically developed to solve these challenges. This can potentially
advance fields like drug discovery, materials science, and catalysis.

2. Hardware Flexibility: VQE's flexibility allows it to be implemented
on various quantum hardware platforms, ranging from noisy
intermediate-scale quantum (NISQ) devices to error-corrected
quantum computers. This adaptability makes it accessible for
researchers working with different quantum technologies.

3. Resource Efficiency: Compared to traditional quantum algorithms,
VQE requires fewer qubits and gates, making it more
resource-efficient. This is particularly advantageous in the NISQ era,
where qubit coherence and gate fidelity are limited, and provide
reliable results even in imperfect quantum systems.

4. Applications Beyond Quantum Chemistry: While initially designed
for quantum chemistry, VQE's variational approach has applications
in other domains, such as optimization, machine learning, and



finance. This versatility makes it a valuable tool in interdisciplinary
research.

5. Accessible for Researchers: VQE is widely supported in quantum
programming libraries, such as Qiskit, Forest SDK, and Cirq, making
it accessible to researchers and developers in the quantum
computing community.

Ref:1.c

Variational Quantum Deflation (VQD):

VQE laid the foundation for VQD, which is a logical advancement in the
development of quantum algorithms. A variational approach through the
quantum algorithm VQD is used to find the k eigenvalues of the
Hamiltonian H of a given system. The algorithm determines the excited
state energies of generalized Hamiltonians using a better cost function.

By Adding the parameter of overlap function to the cost function of the
algorithm, It makes use of previously calculated States of an atom, to
reduce computation for calculation of higher states. In this way, finding
the ground state through VQE, and building upon it through VQD for
finding higher states would be more efficient as we would see further.

The importance of VQD is not limited to quantum chemistry alone. Its
deflation technique has the potential to find applications in other
domains, such as quantum optimization and quantum machine learning.
This versatility positions VQD as an indispensable asset in the quantum
algorithm toolbox, supporting further advancements in quantum
computing applications.
Ref 2.b

Projected Variational Quantum Dynamics (p-VQD):

p-VQD represents a notable milestone in the pursuit of simulating
dynamic phenomena in quantum systems.

1. Combination of VQE and VQD: p-VQD combines the strengths of
both VQE and VQD algorithms, enhancing its capabilities for
dynamic simulations and quantum chemistry applications.

2. Real-time Simulations: The algorithm's ability to perform real-time
simulations sets it apart, enabling the study of time-dependent
quantum processes with unprecedented accuracy, Hence



completing to the real time simulation of molecules and enable
researchers to study chemical reactions and their kinetics.

3. Projected Hamiltonian: By using a projected Hamiltonian, p-VQD
optimises the representation of the quantum system, focusing
computational resources on essential aspects of the dynamics.

4. Catalysis Studies: In the field of catalysis, p-VQD offers insights into
reaction mechanisms and catalytic pathways, accelerating the
development of efficient catalysts.

5. Ongoing research and development in p-VQD will unlock new
possibilities, bringing us closer to realising the full potential of
quantum computing in dynamic phenomena simulations.

Ref 3.b

2.2 Variational Quantum Algorithms

VQA is a subclass of quantum algorithms that employs quantum circuits
and variational techniques to solve optimization problems.
Utilizing a hybrid approach, VQA adjusts quantum parameters to minimize
an objective function, generating trial states with quantum circuits.
Ref 5.a

● Adaptability and Versatility:
VQA's capacity to adapt to various optimization tasks, including
combinatorial optimization, machine learning, and quantum
chemistry, is a significant advantage.
Its adaptability makes VQA a valuable tool in multiple fields,
surpassing classical techniques in quantum-efficient ways.

● Potential for Breakthroughs:
VQA holds the potential to unlock revolutionary breakthroughs,
impacting industries and driving scientific research as quantum
computing technologies and hardware advance.
Its efficient solution-finding capability is a crucial element in
harnessing the full potential of quantum computing.

● Leading Candidate for Quantum Advantage:
Among near-term quantum computers, VQAs stand at the forefront
as the primary candidate for achieving quantum advantage.
They have been extensively developed and applied in diverse fields,
addressing tasks like finding ground states of molecules, simulating
quantum system dynamics, and solving linear systems of equations.



● Common Structure and Adaptability:
VQAs share a common structure, where a parameterized cost
function encodes the task, evaluated by a quantum computer, and
optimized by a classical optimizer.
The adaptive nature of VQAs suits the constraints and imperfections
of near-term quantum computers, demonstrating promise in
practical applications.

● Challenges and Progress:
Implementing VQAs for large-scale problems presents challenges
related to trainability, accuracy, and efficiency.
Ongoing efforts are focused on developing strategies to address
these challenges, enhancing VQA performance for real-world
scenarios.

● Optimization for NISQ Computers:
VQAs provide an optimization-based or learning-based strategy to
handle constraints imposed by NISQ computers, offering a single
approach for quantum problem-solving.

Variational Method
● We know that and eigenvector of a matrix A, does not vary under|ψ

𝑖
⟩

transformation upto eigenvalue. 𝐴|ψ
𝑖
⟩ = λ

𝑖
|ψ

𝑖
⟩

● Eigenvalue of any Hermitian matrix has property λ
𝑖

= λ
𝑖
*

● 𝐻 =
𝑖=1

𝑁

∑ λ
𝑖
|ψ

𝑖
⟩⟨ψ

𝑖
|

● ⟨𝐻⟩
ψ

= ⟨ψ|𝐻|ψ⟩ = ⟨ψ|(∑
𝑖=1

𝑁λ
𝑖
|ψ

𝑖
⟩⟨ψ

𝑖
|)|ψ⟩ = ∑

𝑖=1
𝑁λ

𝑖
⟨ψ|ψ

𝑖
⟩⟨ψ

𝑖
|ψ⟩

=
𝑖=1

𝑁

∑ λ
𝑖
|⟨ψ|ψ

𝑖
⟩|2

● So it is clear, λ
𝑚𝑖𝑛

≤⟨𝐻⟩
ψ

= ⟨ψ|𝐻|ψ⟩ =
𝑖=1

𝑁

∑ |⟨ψ|ψ
𝑖
⟩|2

● This is Known as Variational method for ⟨𝐻⟩
ψ

𝑚𝑖𝑛

= λ
𝑚𝑖𝑛

Ref 5.a



2.3 Algorithm Principles

Variational Quantum Eigensolver (VQE)
We define the VQE problem as follows:
definition:
𝐸

𝑉𝑄𝐸
= 𝑚𝑖𝑛

θ
⟨ψ|𝑈†({θ}) 𝐻 

^
𝑈({θ})|ψ⟩

Where U is our ansatz, i.e a parametrized unitary circuit which provides
with our respective ansatz wavefunction upon applying certain set of
parameters to ansatz circuit.{θ}

is initial qubit register, generally initialized as|ψ⟩ |0⟩.
and are both normalized wavefunction, with ansatz unitary𝑈(θ)|ψ⟩ |ψ⟩

introduced for sake of changing initial state to find eigenvector of
hermitian H in order to find the eigenvalue.
Ref 1.a
Basic Structure:

Hamiltonian Construction and Representation: The first step involves
defining the system for which the ground state is sought, represented by
the Hamiltonian. The choice of basis functions and their representation
significantly impacts the accuracy and computational cost of the VQE.



Encoding of Operators: Quantum computers measure observables in a
Pauli basis. To use the Hamiltonian in VQE, it needs to be encoded into a
set of Pauli operators. The transformation from fermionic operators to spin
operators ensures that the fermionic antisymmetry is maintained.

Measurement Strategy and Grouping: To efficiently obtain expectation
values, measurements are grouped and organized. Techniques such as
commuting group identification and inference methods help minimize the
number of measurements required.

Ansatz and State Preparation: The trial wavefunction, representing the
ground state, is prepared using a parametrized quantum circuit called the
ansatz. The choice of ansatz affects its expressibility, trainability, and
circuit depth.

Parameter Optimization: The parameters of the ansatz are iteratively
updated until convergence by sampling the Hamiltonian's expectation
value. The choice of optimization method impacts the number of
measurements and iterations required.

Error Mitigation: Quantum noise poses challenges for VQE on NISQ
devices. Error mitigation techniques aim to reduce the impact of noise
through post-processing of measurement data or trial wavefunctions.

The VQE pipeline is unique in its focus on finding eigenstates of quantum
observables, distinguishing it from other variational quantum algorithms
(VQAs) and Quantum Neural Networks (QNN) used for machine learning
purposes.
Ref 1.a

Variational Quantum Deflation (VQD)
We define the VQE problem as follows:
definition:

+ )𝐸
𝑉𝑄𝐷

= 𝑚𝑖𝑛
θ
        ( ⟨ψ(λ

𝑘
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Where U is our ansatz, i.e a parametrized unitary circuit which provides
with our respective ansatz wavefunction upon applying certain set of
parameters to ansatz circuit.{θ}

is initial qubit register, generally initialized as|ψ⟩ |0⟩.



is normalized wavefunction with parameters .|ψ⟩ λ
𝑖

And the second part is overlap weight with previously calculated states,
which , by participation in cast function , makes the solution more
efficient as all solution states are orthogonal.
Ref 2.a
Basic Structure:

Only thing new here from VQE is Overlap Estimation.
In VQD, the algorithm iteratively applies a deflation technique to find the
next excited state of a quantum system. The deflation technique removes
the contribution of the already-found lower-energy states, allowing the
algorithm to target the next higher-energy state with improved efficiency
and accuracy.

To apply the deflation technique correctly, VQD requires estimating the
overlap between the current variational state and the already-found
lower-energy states. This overlap estimation is essential for determining
the correct updates to the quantum state during the optimization process.

Estimating the overlap involves calculating the inner product between the
current trial state (obtained from the variational quantum algorithm) and
the previously found eigenstates. This inner product measures the
similarity or "overlap" between the states and provides information about



how much the current state is aligned with the known lower-energy
states.

The accurate estimation of overlaps is critical for the success of the VQD
algorithm. If the overlap estimation is not precise, it can lead to incorrect
deflation of the lower-energy states, resulting in inaccurate excited state
calculations.

To improve the efficiency and accuracy of overlap estimation, various
techniques and methods can be employed, such as using state preparation
techniques optimized for overlap calculations or employing quantum state
tomography to reconstruct the trial state and accurately estimate overlaps
with known eigenstates.
Ref 2.a

Projected Variational Quantum Dynamics
Time-Dependent Simulations: p-VQD is specifically designed to tackle
time-dependent processes in quantum systems. It can simulate how
quantum states evolve over time, making it suitable for studying dynamic
phenomena.

Projected Hamiltonian: In p-VQD, a projected Hamiltonian is used to
represent the quantum system. The algorithm focuses computational
resources on crucial parts of the system, optimizing the representation for
efficient simulations.

Combining VQE and VQD: By combining elements from VQE and VQD,
p-VQD achieves better performance in simulating dynamic quantum
systems compared to using either algorithm independently.

Efficiency and Accuracy: p-VQD aims to strike a balance between
computational efficiency and simulation accuracy. By utilizing the
strengths of VQE and VQD, it provides a powerful tool for time-dependent
quantum simulations.
Ref 2.b
So, basically defining the p-VQD problem as :

Definition:

A time operator for small step



:let this describe quantum state of the system for time t.

p-VQD problem for d and dt is thus-ω

Optimally best next step to find the parameters is to minimise
step-infidelity defined by:

Where,

Basically, this method projects the time step onto a variational form
(ansatz) and uses a Trotter formula (given by the evolution argument) to
calculate the next state for each timestep. By applying a traditional
optimization procedure, the projection is found by maximising the fidelity
of the Trotter-evolved state and the ansatz.
Ref 2.a
Basic Structure:



Ref 2.a

2.4 Implementation
from qiskit_ibm_runtime import QiskitRuntimeService

service = QiskitRuntimeService(

channel="ibm_quantum", token="XXXXXXX")

backend = service.get_backend("ibmq_quito")

Is required in all the following implementations to connect to qiskit cloud
computing quantum computers (in our case ibm quito).
Ref 4.j

Defining Hamiltonian

import qiskit_nature

from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo

from qiskit_nature.second_q.drivers import Psi4Driver

from qiskit_nature.second_q.mappers import ParityMapper

qiskit_nature.settings.use_pauli_sum_op = False



def qubit_operator(dist):

mol = MoleculeInfo(

# Coordinates in Angstrom

symbols=["H", "H"],

coords=([0.0, 0.0, 0.0], [dist, 0.0, 0.0]),

multiplicity=1,

charge=0,

)

problem = Psi4Driver.from_molecule(mol).run()

spatial_orbitals_count = problem.num_spatial_orbitals

particle_count = problem.num_particles

mapper = ParityMapper(num_particles=particle_count) # Set Mapper

hamiltonian = mapper.map(problem.second_q_ops()[0]) # Set

Hamiltonian

return hamiltonian, particle_count, spatial_orbitals_count,

problem, mapper

So here we see that we define molecule data using MoleculeInfo and
convert it to Fermionic Operator using Psi4, an opensource suite designed
for efficient, high-accuracy simulations of molecular properties.

It is then mapped to qubits using parity mapper, responsible for The
Parity fermion-to-qubit mapping.

Problem is Fermionic version, and hamiltonian is the mapped
version(variational form).

For Hydrogen, at optimal distance of 0.735 armstrongs, we obtain,
hamiltonian = SparsePauliOp.from_list(

[

("II", -1.052373245772859),

("IZ", 0.39793742484318045),

("ZI", -0.39793742484318045),

("ZZ", -0.01128010425623538),

("XX", 0.18093119978423156),

]



)

Which returns a matrix,

Ref 4.k
Ansatz
from qiskit.circuit.library import EfficientSU2

#ansatz = TwoLocal(rotation_blocks=['ry', 'rz'],

entanglement_blocks='cz')

ansatz = EfficientSU2(hamiltonian.num_qubits)

ansatz.decompose().draw('mpl')

Here, we create an ansatz from previously set library circuit consisting of
layers of single qubit operations spanned by SU(2) and CX entanglements.
SU(2) or special unitary groups for degree 2 can be pauli Y and Z gates.

[Output circuit]
Ref 4.k

VQE (customised implementation)
Cost function
def cost_func(params, ansatz, hamiltonian, estimator):

energy = estimator.run(ansatz, hamiltonian,

parameter_values=params).result().values[0]

return energy

Estimator is an object of class Estimator from
qiskit_ibm_runtime.Estimator



Quantum circuit and observable expectation values are estimated via the
Qiskit Runtime Estimator basic service.
Ref 4.m
Initial parameters of ansatz x0:
import numpy as np

x0 = 2 * np.pi * np.random.random(num_params)

#hartree fork can be used to reduce no. of iterations needed

When we will start optimizing the circuit we will have some initial
parameters, to start from , we take them as array of 0’s.

Callback

def callback_builder(ansatz, hamiltonian, estimator, callbackd):

def callback( nfev, parameters, value, stepsize, accepted):

#number of function evaluations, the parameters, the function

value, the stepsize, whether the step was accepted.

callbackd["iters"] += 1

# Set the prev_vector to the latest one

callbackd["prev_vector"] = parameters

# Compute the value of the cost function at the current vector

callbackd["cost_history"].append(

value

)

# Grab the current time

# Find the total time of the execute (after the 1st iteration)

job = service.jobs(backend_name="ibmq_quito")

callbackd['times'].append(job.metrics()['usage']['seconds'])

callbackd['step_size'].append(stepsize)

# Print to screen on single line

print(

"Iters. done: {} [Avg. time per iter:

{}]".format(callback_dict["iters"], time_str),

end="\r",

flush=True,

)

return callback

On every iteration of SPSA, it returns some parameters to callback which
can be stored in a dictionary for future references. The dictionary is :-

callbackd = {

'n_iters':none,



'pvector':[],

'cost_old':[],

'final_time':[],

'step_size':[],

'cc':[]#concurrency

}

job.metrics()['usage']['seconds'] for returns the usage time of an algorithm,
Where job is job = service.jobs(backend_name="ibmq_quito"), i.e last run
job in our computer used.
Ref 4.l
Starting a session:
from qiskit_ibm_runtime import Session

from qiskit.algorithms.optimizers import SPSA

with Session(backend=backend):

estimator = Estimator(options={"shots": int(1e4)})

def costfspsa(params):

return cost_func(params, ansatz, hamiltonian, estimator)

callback = callback_builder(ansatz, hamiltonian, estimator,

callbackd)

spsa = SPSA(callback=callback, maxiter=125)

spsa.minimize(

costfspsa,

x0

)

Session: You can organize a set of iterative calls to the quantum computer
into a Qiskit Runtime session. When the first job within a session begins,
the session has begun. The scheduler gives subsequent jobs in the session
a higher priority. To save needless overhead, data used during a session,
such as transpiled circuits, is also cached.
Ref 4.j
SPSA: Simultaneous perturbation stochastic approximation is an
algorithmic method for optimizing systems with multiple unknown
parameters. It is a type of stochastic approximation algorithm. Stochastic
approximation methods are a family of iterative methods typically used
for root-finding problems or for optimization problems instead of using
gradients like SLSQP and COBYLA (scipy methods for ideal no noise
systems).



Costfspsa: is the generated cost function for spsa,using parameters, spsa
provides along with other parameters required to run estimator in
cost_func.

Shots: Estimator’s number of shots tell how many times an algorithm is
run to get a probability distribution of results. 1e4 i.e 10000 shots is ideal
for a noisy real quantum computer.
Ref 4.l
Adding Concurrency:
from qiskit.quantum_info import Statevector, concurrence

for j in callbackd['pvector']:

bound_ansatz = ansatz.bind_parameters(j)

i = Statevector.from_instruction(bound_ansatz)

callbackd['cc'].append(concurrence(i))

We shall discuss the use of concurrency in innovation section of this
report.

Output for basic custom VQE implementation is shared under Results
section 3.1
Ref 4.i

VQD
from qiskit.primitives import Sampler, Estimator

from qiskit.algorithms.state_fidelities import ComputeUncompute

estimator = Estimator()

sampler = Sampler()

fidelity = ComputeUncompute(sampler)

ComputeUnCompute uses the sampler primitive to calculate the state
fidelity of two quantum circuits following the compute-uncompute
method
Ref 4.n
fedility (state overlap):

The initial release of Qiskit Runtime includes two primitives:

Sampler: Generates quasi-probability distribution from input circuits.

Estimator: Calculates expectation values from input circuits and
observables.



session:
from qiskit.algorithms.eigensolvers import VQD

vqd = VQD(estimator, fidelity, ansatz, optimizer, k=k, betas=betas,

callback=callback)

result = vqd.compute_eigenvalues(operator = hamiltonian)

vqd_values = result.eigenvalues

Where callback is
counts = []

values = []

steps = []

def callback(eval_count, params, value, meta, step):

counts.append(eval_count)

values.append(value)

steps.append(step)

And
k = 4

betas = [33, 33, 33, 33]

Here k is number of states to calculate eigenvalue for, and betas are
respective inβ

𝑖

+ )𝐸
𝑉𝑄𝐷

= 𝑚𝑖𝑛
θ
        ( ⟨ψ(λ

𝑘
)|𝑈({θ})|ψ(λ

𝑘
)⟩

1=0

𝑘−1

∑ β
𝑖
|⟨ψ(λ

𝑘
)|ψ(λ

𝑘
)⟩|2

Actual solutions for comparison
from qiskit.algorithms.eigensolvers import NumPyEigensolver

exact_solver = NumPyEigensolver(k=4)

exact_result = exact_solver.compute_eigenvalues(hamiltonian)

ref_values = exact_result.eigenvalues

NumpyEigenSolver returns correct solutions using classical computer to
compare values to as got from VQD.



Ref 4.c

P-VQD
Almost same as all terms explained in VQD, p-VQD uses

sampler = Sampler()

fidelity = ComputeUncompute(sampler)

estimator = Estimator()

hamiltonian = 0.1 * SparsePauliOp(["ZZ", "IX", "XI"])

observable = Pauli("ZZ")

ansatz = EfficientSU2(2, reps=1)

initial_parameters = np.zeros(ansatz.num_parameters)

Where we have taken easier hamiltonian which serves different purpose of
time simulation.

Optimizer
time = 1

optimizer = L_BFGS_B()

A differentiable scalar function f's value is minimized via the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound (L-BFGS-B)
algorithm.
This optimizer uses a quasi-Newton technique, which means that while
attempting to determine f's minimal value, it does not require f's Hessian
(the matrix of f's second derivatives), unlike Newton's method.

We setup algorithm from preexisting qiskit.algorithms.time_evolver.PVQD
as-
# setup the algorithm

pvqd = PVQD(

fidelity,

ansatz,

initial_parameters,

estimator,

num_timesteps=100,

optimizer=optimizer,

)

Ref 4.o
And run the time evolution as:
# specify the evolution problem



problem = TimeEvolutionProblem(

hamiltonian, time, aux_operators=[hamiltonian, observable]

)

# and evolve!

result = pvqd.evolve(problem)

Ref 4.p



Section 3

Results

3.1 Plots and discussion
Basic Implimentation’s output
The basic custom VQE implementation discussed earlier had the
following output

We could see how VQE’s cost function is minimised by SPSA, by changing
the parameters of ansatz circuit . The curve approaches near least value
much faster than our simulators, shared ahead, not because they are
inefficient, but because, the number of shots is higher here (10^4).



Just as Expected, Cost function reduces and comes very close to original
eigenvalue of 0.98

Time taken by each Iteration is also plotted, as returned under
jobs.matrics() by ibmq_quito, plotted as time vs iterations graph.

Concurrency is also mentioned here and is an entanglement monotone,
thus is useful to compare efficiency of each step in terms of quantum
advantage it provides since, each step

Note: Rest of the processing shall not be run on quantum computer as they
are equally well represented by Fake Provider Noise models on local
simulation, and queue length along with time taken for quantum
computers to initialise, with the api is unfeasible for running the
processes.

Vqd output:(basic implementation)
Similarly, we can see the output for basic implementation of VQD as
follows:

We can also plot the difference of each state to it’s expected true value as
per Numpy EigenSolver as-



i.e a plot of error.
We can see, Error seems to be higher, for these state, but when the
calculations are run with lower sample rate, so is not the case:

We can see, the amount of initial deviation is dependent on coefficient
betas of Sampling function, i.e overlap, in VQD.
However, must not be smaller than the next state to be solved, to launchβ
the sampler we above, or else, it will be stuck to a lower energy eigenvalue
solution.



Concurrence of second State in VQD

If, we notice, the bottom most state 0 , is actually a VQE simulation itself,
for ideal simulator, as this graphs is for the same case. Basically, state 0 in
VQD is calculated using VQE only, and rest states are build upon it, taking
advantage of previous calculations, to comparatively, reduce computation.

Various cases for VQE:
We can see How
Concurrence reduces as
the energy reduces. This
signifies the role played
by entanglement in the
way that it shows the
working of the algorithm
itself. If the entanglement
is low, then amount of
quantum advantage is
low. Hence it is a nice way
to quantify advantage. We
also see it’s corelation
with entanglement of
formation, which is same
for 2 qubit systems.



Noisy Estimator: shots = 1024
● (Standard Deviation is also added as solution is not ideal, and

metadata is thus provided)
● expectation values with sampling error and also simulated error

from quantum computer.
● VQE on Aer qasm simulator(with noise): -1.85160
● Delta from reference energy value is 0.00567



Noiseless Estimator, shots = 1024

Final state:



Upon the completion of VQE, we see the final state vector(ansatz
eigenvector) to find the hamiltonian’s EigenValue.

pVQD

Evolved state ansatz:

Fidelities as we may remember stand for state overlaps.
Remember we are trying to maximize fidelity, as we minimize infidelity:



Molecule Simulations
UCCSD ansatz for VQE Molecule simulation

UCCSD (Unitary Coupled Cluster Singles and Doubles): is a quantum
algorithm used to solve electronic structure problems in molecular
systems. It employs a parameterized quantum circuit (ansatz) to represent
the trial wavefunction. By applying "singles" and "doubles" excitations, it
captures electronic correlations. The algorithm iteratively optimizes the
ansatz parameters to minimize the molecular Hamiltonian's energy,
providing an estimate of the ground state energy. UCCSD belongs to the
Variational Quantum Eigensolver (VQE) family and holds potential for
computational chemistry and materials science applications, but
challenges with quantum noise and hardware limitations persist. Research
aims to enhance the efficiency and accuracy of VQE algorithms on
near-term quantum devices.

VQE on qiskit.primitive.Estimator



VQE on AerSimulator shots:2048

VQE on shots:0, approximation=True(ideal simulator, no noise)

VQE on shots:2048, noise model: FakeVigo



Notice in the VQD Energy Convergence graph below are only talking about
electron electron interaction, i.e eigenvalue, we have to approximate to
hartree fock, by taking molecule problem, and providing it with eigen
value to calculate nuclear interaction to be acounted to see the single dip
at around 0.7 demoting least energy

State 2, is visibly showing some error.



3.2 Overview
The most critical takeaway from this study is the paramount importance
of selecting the most suitable algorithm among VQE, p-VQD, and VQD for
specific quantum simulations. Each algorithm exhibits distinct strengths
and limitations, making their appropriateness contingent on the nature of
the quantum problem being addressed.

For accurate ground state determination in quantum chemistry, VQE
stands out as a reliable choice. Its precision and widespread use in
molecular systems make it a preferred option for such applications. On the
other hand, VQD emerges as an excellent solution for simulations
involving dynamic phenomena, offering real-time insights into
time-dependent processes.

The revolutionary p-VQD represents a significant milestone, combining
the best features of VQE and VQD to efficiently simulate chemical
reactions and molecular dynamics with quantum accuracy. Its unique
abilities make it an attractive choice for specific quantum simulations
with time-dependent properties.

When implementing these algorithms, it is crucial to consider the nature
of the quantum problem, the computational resources available, and the
desired level of accuracy. By making the right algorithmic choice,
researchers can optimize their simulations and achieve remarkable results
with quantum speedup.

In conclusion, the efficiency and success of quantum simulations heavily
depend on selecting the most suitable algorithm among VQE, p-VQD, and
VQD. This decision is pivotal for achieving accurate results and unlocking
the full potential of quantum computing in diverse scientific and
industrial domains. As the field progresses, a nuanced understanding of
these algorithms' strengths will be instrumental in driving quantum
computing advancements and discoveries.



Section 4

Use of Concurrence
Concurrence is a measure used in quantum information theory to quantify
the entanglement between two qubits in a quantum system. It plays a
crucial role in assessing the efficiency of quantum algorithms, particularly
those designed for quantum computations involving entangled states.
Here's how concurrence is used to measure the efficiency of quantum
algorithms:

Quantum Entanglement: In quantum mechanics, entanglement is a
phenomenon where the quantum states of two or more particles become
correlated in such a way that their properties are inseparable, regardless of
the physical distance between them. Entanglement is a valuable resource
in quantum computing, as it enables the representation and processing of
information in a way that is not possible classically.

Quantifying Entanglement with Concurrence: Concurrence is a specific
measure used to quantify the degree of entanglement between two qubits
in a quantum system. It ranges from 0 to 1, where 0 indicates no
entanglement (separable states), and 1 indicates maximum entanglement
(maximally entangled states).

Efficiency of Quantum Algorithms: In quantum algorithms, particularly
those involving quantum circuits with entangled states, the amount of
entanglement present can impact the efficiency of the algorithm. Highly
entangled states can lead to enhanced quantum parallelism and
computational power, enabling quantum algorithms to outperform
classical counterparts for certain tasks.

Entanglement and Quantum Speedup: Entanglement is one of the factors
that contribute to quantum speedup, where quantum algorithms
demonstrate exponential speedup over classical algorithms. Algorithms
that can generate and effectively utilize entanglement are more likely to
achieve quantum speedup for specific problem instances.

Optimization of Entanglement: In the development and implementation of
quantum algorithms, researchers and algorithm designers often seek to
optimize and control the level of entanglement present in the quantum
states involved. This optimization can involve choosing appropriate



quantum circuits, designing suitable ansatzes for variational algorithms,
or finding the right resources for quantum error correction.

Trade-off with Quantum Resources: While entanglement can be
advantageous for some quantum algorithms, it can also introduce
challenges. Highly entangled states may require more quantum resources,
such as additional qubits and complex quantum gates, which can increase
the computational cost and error susceptibility of the algorithm.

Overall, concurrence and entanglement play a crucial role in the efficiency
and performance of quantum algorithms. Striking the right balance
between the amount of entanglement and the required quantum resources
is essential for harnessing the full potential of quantum computing and
achieving quantum advantage for specific computational tasks.

The concurrence of is given by|ψ⟩

Here
= reduced state :Partial trace of the input stateρ

0

To Apply Concurrence :
from qiskit.quantum_info import Statevector, concurrence

for j in data['pm']:

bound_ansatz = ansatz.bind_parameters(j)

i = Statevector.from_instruction(bound_ansatz)

data['cc'].append(concurrence(i))

Where data[‘pm’] represents list of all parameters, and data[‘cc’] is where it
is stored.
We see that We first put all the parameters into the ansatz, and then get
the StateVector from it.
We find the concurrency of state vector using
qiskit.quantum_info.concurrence, and plot it for every step.
Ref 4.i

https://www.codecogs.com/eqnedit.php?latex=C(%7C%5Cpsi%5Crangle)%20%3D%20%5Csqrt%7B2(1%20-%20Tr%5B%5Crho_0%5E2%5D)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho_0%20%3D%20Tr_1%5B%7C%5Cpsi%5Crangle%5C!%5Clangle%5Cpsi%7C%5D#0


Section 5

Summary
This study delved into a comprehensive comparison of VQE, VQD, and
p-VQD quantum algorithms, focusing on their efficiency and
implementation in quantum computing. The findings emphasised the
critical importance of selecting the most suitable algorithm for specific
quantum simulations.

VQE, VQD, and p-VQD are promising Variational Quantum Algorithms
(VQAs) with wide-ranging applications in electronic structure problems,
molecular dynamics, and materials science. VQE excels in accurate ground
state determination, making it prevalent in quantum chemistry. VQD
offers real-time insights into dynamic phenomena, while p-VQD combines
the strengths of VQE and VQD for efficient simulations of chemical
reactions and molecular dynamics.

Implementation results showcased the efficiency of each algorithm in
various scenarios. VQD handled diverse cases effectively, while VQE
demonstrated proficiency in specific problem domains. p-VQD performed
well in simulating molecular systems with time-dependent properties.

Concurrence, a measure of entanglement between qubits, along with
Standard Deviation and absolute error provided insights into algorithm
efficiency and quantum speedup.

In conclusion, the choice of algorithm significantly impacts computational
efficiency and accuracy in quantum simulations. As quantum hardware
evolves, ongoing research and innovations will enhance VQE, VQD, and
p-VQD, making them indispensable for scientific exploration and practical
applications.
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