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Abstract

This work serves as both a practical guide to basic Ferromagnetic Resonance
(FMR) setup and a theoretical primer for Spin-Torque Ferromagnetic Resonance
(ST-FMR). It begins with an exploration of various FMR experimental tech-
niques, including setups based on spectrum analyzers, nanovoltmeters and most
importantly, is focused on lock-in amplifiers. The report then transitions to a
theoretical study of spintronics, detailing the fundamental concepts necessary
to understand the principles behind ST-FMR and establishing an experimental
setup for same.
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Chapter 1

Fundamentals of FMR

Most of the theory is based on the book by C.Kittel [6] and lecture notes, by
Dr. Kuntal Roy, for Spintronics Course at IISER Bhopal.

1.1 Magnetic Domains

To describe fermions (like electrons), we need antisymmetric wavefunction (Ψ(1, 2) = −Ψ(2, 1)).

χs =
1√
2
(| ↑1↓2⟩ − | ↓1↑2⟩) .

Hence,
Singlet spin state (antisymmetric, total spin S = 0):

χs =
1√
2
(| ↑1↓2⟩ − | ↓1↑2⟩) .

i.e. Symmetric spatial wavefunction paired with an antisymmetric spin wavefunction.
Triplet spin states (symmetric, total spin S = 1):

χt =


| ↑1↑2⟩,
1√
2
(| ↑1↓2⟩+ | ↓1↑2⟩) ,

| ↓1↓2⟩.

i.e. Antisymmetric spatial wavefunction paired with a symmetric spin wavefunction (triplet
state).

Example of Helium for Heisenberg Exchange Hamiltonian

Consider two electrons in a system (e.g., in a molecule like H2 or a solid). The non-relativistic
Hamiltonian is:

Ĥ = − ℏ2

2m
(∇2

1 +∇2
2) + V (r⃗1) + V (r⃗2) +

e2

4πϵ0|r⃗1 − r⃗2|
where V (r⃗i) is the external potential (from nuclei here), and the last term is the Coulomb
repulsion between electrons. If we compute the expectation value of the Hamiltonian ⟨Ψ|Ĥ|Ψ⟩
for the singlet and triplet states, we notice, only the last coulumbic interaction term is different
for singlet and triplet case.

⟨ϕs|
e2

4πϵ0|r⃗1 − r⃗2|
|ϕs⟩ vs. ⟨ϕt|

e2

4πϵ0|r⃗1 − r⃗2|
|ϕt⟩
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We call this as the exchange term. This braket (integral) for both cases can be given as:

K =

∫
d3r1d

3r2 ϕ
∗
1(r⃗1)ϕ

∗
2(r⃗2)

e2

4πϵ0|r⃗1 − r⃗2|
ϕ2(r⃗1)ϕ1(r⃗2)

The energy difference between singlet and triplet states is:

Es − Et = 2K

where Es is the singlet energy and Et is the triplet energy. The triplet state is lower in energy
by 2K.

Hence, For a system of two electrons with spins S⃗1, effective spin Hamiltonian that repro-
duces this energy difference is:

Ĥex = −2JS⃗1 · S⃗2

A generalization of the same for many-electron system is called Heisenberg Exchange
Hamiltonian (approximation):

Ĥex = −2
∑

i<j(i ̸=j)

J⃗ijS⃗i · S⃗j (1.1)

Here J⃗ij is the exchange constant for the pair of electrons i and j and S⃗ being the spin operators
(S = 1/2 for electron).[6] for a 3d lattice case, these spin operators obey the angular momentum
commutation relation:

[Sx
j , S

y
j ] = i

∑
z

εxyzS

and different sites spins, commuting.The magnetization of a ferromagnet comes from the quan-
tum mechanical alignment of electron spins in its atoms, not from free electrons. This exchange
interaction forces the magnetic moments of neighboring electrons to align in a parallel fashion
below Curie point. If J⃗ij is negative → Ferromagnetic. since interaction energy of two
spins favors them to be parallel in this case, it creates macroscopic magnetization vectors called
magnetic domains, whose moment is represented by M⃗ . All the dynamics described ahead
would be considering these magnetic domains, and not exactly spins, whose moment can be
given by µ⃗.

M⃗ =
1

V

∑
i

µ⃗i (1.2)

with V being volume of the whole material and
∑

i µ⃗i being vector sum of individual magnetic
moments of spins.

1.2 Landau-Lifshitz-Gilbert (LLG) Equation

we can then assume when an electron is placed in an applied magnetic field H⃗, the magnetic
field will produce a torque (τ) on the magnetic moment µ⃗:

µ⃗× H⃗ = τ =
dL⃗

dt
(1.3)

where L⃗ is the angular momentum of the electrom. Also,

µ⃗ = I · A⃗.

Since, for one time period T , I = −e/t and A = πr2, we see,

µ⃗ = − e

T
· πr2 · Â (1.4)
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Also,

L⃗ = m · ωr2 = me · 2πfr2 =
me · 2π · r2

T
L̂

Replacing which in (1.4), gives us,

µ⃗ = − e

2me
L⃗

because, Â = L̂. lets call for ease,

γ =
e

2me
,

However, we are imagining the electron to be a rigid body rotation around an axis, which is not
really the case, since the mass in not distributed identically to charge in such a model. Infact
it is close to twice what is predicted by this classical model. Hence we introduce a correction
factor called as Landé g-factor defined to be the ratio of magnetic moment of a particle to its
total angular momentum, which is close to 2 for electron. Hence we redefine:

γ =
gee

2me
=

ge · µb

ℏ
, (1.5)

also known as the gyromagnetic ratio so, we may define it is:

γ =
M⃗

S⃗
=

magnetic moment

angular momentum

Hence, we say:
µ⃗ = −γL⃗ (1.6)

replacing the same, in (1.3), we get [22]:

µ⃗× H⃗eff = τ = −1

γ

dµ⃗

dt
(1.7)

or, for all the magnetic moments combined with M⃗ = Nµ⃗, as:

dM⃗

dt
= −γM⃗ × H⃗eff (1.8)

Being the equation describing the precession. Also, we can further say, it is valid for unit
vector M̂ , hence describing the angular velocity as:

ω = γB

or simply,

f =
γ

2π
B (1.9)

Describing natural frequency of rotation. However, this is ideal case scenario where spins
precess forever. We hence need to introduce damping term to account for dissipation of energy
from the precessing magnetization to its surroundings.

Origin of Damping and Incorporation Through LLG

Most fundamental origin of this damping is:

• Spin-orbit coupling: We can derive SOC directly from non-relativistic limit of Dirac
equation to see the classical picture, revealing Zeeman interaction and SOC. Precession
generates a time varying spin orientation of electrons, which is coupled to the electrons
orbital motion due to the relativistic effects of SOC. This orbal momentum is then lost to
heat directly (collisions).
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• Spin lattice relaxation: Since spins are magnetic and phonons electric, hence, spin-
phonon coupling is pretty weak and is mostly mediated by SOC only. Due to interaction
of these excited electrons with phonons, energy is transfered to lattice, which inturn is
dissipated as heat.

H⃗eff

−M⃗ × H⃗eff

damping force

Figure 1.1: Spin precession and damping force direction.

There are various ways to incorporate this extra damping term to (1.8). Originally, the
Landau-Lifshitz form can be described as:

−λM⃗ × M⃗ × H⃗eff (1.10)

with Ms being the Saturation Magnetization of the sample and α being the dimensionless
constant called as damping factor as we will notice in LLG. This gives the final Landau-
Lifshitz equation as:

dM

dt
= −γ0M⃗ × H⃗eff − λM⃗ × M⃗ × H⃗eff (1.11)

Which is not hard to imagine as being the force always perpendicular to the precessing direction.
However, we can actually look at it more intuitively by assuming it directly as the damping
term to be rate of change of M⃗ cross product with M⃗ as can be given by Gilbert form of
damping:

α

Ms
M⃗ × dM⃗

dt
(1.12)

giving the final Landau-Lifshitz-Gilbert equation as:

dM

dt
= −γM⃗ × H⃗eff +

α

Ms
M⃗ × dM⃗

dt
(1.13)

being relatively more intuitive as it is cross product of rate of retardation with M, always
pointing perpendicular to B̂. Both the formulae account for same equation with different
constants.

LLG to LL equation conversion

Start from the Gilbert form

dM⃗/dt = −γ M⃗ × H⃗eff +
α

Ms
M⃗ × (dM⃗/dt).

4



Bring the damping term to the left:(
I − α

Ms
M⃗×

)
dM⃗/dt = −γ M⃗ × H⃗eff . (1.14)

Apply M⃗× to the above equation. Using the triple-product identity M⃗ × (M⃗ × X) =
M⃗(M⃗ · X) − M⃗2X and M⃗ · (dM⃗/dt) = 1

2d(M⃗ · M⃗)/dt = 0 (since Ms is constant), we get

M⃗ × (M⃗ × dM⃗/dt) = −M2
s dM⃗/dt. Therefore(
M⃗ ×+αMsI

)
dM⃗/dt = −γ M⃗ × (M⃗ × H⃗eff). (2)

Now combine (1.14) with α
Ms

×(2):(
I − α

Ms
M×

)
dM⃗/dt+

α

Ms

(
M⃗ ×+αMsI

)
dM⃗/dt = −γ

(
M⃗ × H⃗eff +

α

Ms
M⃗ × (M⃗ × H⃗eff)

)
.

The left-hand side simplifies to (1 + α2)dM⃗/dt, so

(1 + α2) dM⃗/dt = −γ
(
M⃗ × H⃗eff +

α

Ms
M⃗ × (M⃗ × H⃗eff)

)
.

Finally divide by 1 + α2 to obtain the Landau-Lifshitz form:

dM⃗/dt = − γ

1 + α2
M⃗ × H⃗eff − αγ

Ms(1 + α2)
M⃗ ×

(
M⃗ × H⃗eff

)
.

notice that,

γ0 =
γ

1 + α2

λ =
αγ

Ms(1 + α2)

(1.15)

Can be used to go from LL to LLG equation.

1.3 Core idea of FMR

Basic idea behind FMR is that we keep increasing the H⃗eff by increasing an external B⃗ext while
throwing an antidamping microwave on sample in perpendicular plain. When the anti-damping
has same frequency as the natural frequency (1.9), we see that damping stops, leading to sample
using up the microwave and hence absorbing power.This absorbed power should ideally be just
at the B⃗ext when it is exactly same as thrown microwave, but in truth, we see a Lorentzian power
Absorption for B vs Absorption. Reason for the same is discussed in section 1.4. Complete
working will be discussed in chapter 3. Ideally the images we see for FMR look like derivative
of Lorentzian, explanation of which is in section 1.5. Given in Figure 1.2, we can see that the
sample is kept on a Coplanar waveguide (CPW). We basically use it to allow microwave to pass
through the sample’s surface, resonsible for antidamping. Then the whole CPW is kept between
an electromagnet to generate external B⃗ responsible for the larmor precession.

1.4 Susceptibility Tensor and Lorentzian Absorption

Proof that power absorption is proportional to ℑ(χxx)

To explain this absorption shape, we look at Polder Susceptibility [13][6]. In macroscopic electro-
dynamics, the instantaneous power density transferred from the RF field to the magnetization
is

pM (t) = µ0 H⃗(t) · dM⃗(t)

dt
. (1.16)
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x

y

z

Irf

h rf

M

H0

Figure 1.2: Sample on CPW with microwave passing through the surface. Whole thing is kept
in External H0. (inspiration: [4])

Because, the dipole moment’s potential is U = −m ·B, and pM (t) = dU
dt = −m · dBdt . Replacing

B = µ0(H +M) isolates the non-returned piece µ0H · ∂M/∂t.
Assume time-harmonic fields with phasors h⃗(t) = ℜ{h⃗ e−iωt} and m⃗(t) = ℜ{m⃗ e−iωt}, re-

lated by linear response m⃗ = χ h⃗. Averaging over one period,〈
h⃗(t) · ˙⃗m(t)

〉
=

ω

2
ℑ
(
h⃗∗ · m⃗

)
=

ω

2
ℑ
(
h⃗∗ · χ h⃗

)
,

which follows by writing
h⃗(t) = 1

2 (⃗he
−iωt + h⃗∗eiωt)

˙⃗m(t) = 1
2(−iω m⃗e−iωt + iω m⃗∗eiωt)

and discarding oscillatory terms at ±2ω in the time average. Therefore, the cycle-averaged
absorbed power density is

P ≡ ⟨pM ⟩ = 1

2
ω µ0ℑ

(
h⃗∗ · χ h⃗

)
. (1.17)

For an in-plane drive h⃗ = hx ˆ⃗x, this reduces to

P =
1

2
ω µ0ℑ

(
χxx

)
|hx|2. (1.18)

so absorption is proportional to the imaginary part ℑ(χxx). Also notice that generally larger
or thicker samples absorb more power due to increased magnetic volume and eddy-current
effects, enhancing FMR signal as we have just proved, for power absorbed per unit volume.
However, note that the thickness is limited by microwave skin depth (typically ∼ 1− 10µm at
GHz frequencies) i.e. microwave travels only at the surface in contact with the CPW[3].

Finding the χ
′′
xx

We start from the Landau–Lifshitz–Gilbert (LLG) equation for magnetization M⃗ in a ferro-
magnet with effective field H⃗eff . We consider a DC bias H⃗0 = H0ŷ, a small RF field

h⃗(t) = hxx̂+ hz ẑ

with time dependence eiωt, and write

M⃗ = mxx̂+Msŷ +mz ẑ

6



with mx,z ≪ Ms. Putting in the LLG equation, The effective field includes external, anisotropy,
and demagnetizing contributions:

H⃗eff = H⃗0 + h⃗(t) + H⃗k + H⃗d, H⃗k =
Hk

Ms
mz ẑ, H⃗d = −mz ẑ.

Linearizing (neglecting terms like mihj and mimj) gives

−iω

(
mx

mz

)
= −γµ0

(
Mshz + (Hk −Ms −H0)mz

−Mshx +H0mx

)
− iω

α

Ms

(
Msmz

−Msmx

)
. (1.19)

Rearranging to matrix form:(
−iω −γµ0(Hk −Ms −H0)− iωα

γµ0Ms + iωα −iω

)(
mx

mz

)
= −γµ0

(
Mshz
−Mshx

)
.

Equivalently, the component equations are

−iωmx = −γµ0

[
Mshz + (Hk −Ms −H0)mz

]
− iωαmz,

−iωmz = −γµ0

[
−Mshx +H0mx

]
+ iωαmx.

In a compact driving form:(
iω γµ0(H0 +Ms −Hk) + iωα

−γµ0H0 − iωα iω

)(
mx

mz

)
= γµ0Ms

(
hz
hx

)
.

For in-plane RF drive hx (set hz = 0), we write m⃗ = χ h⃗. One convenient form relates h⃗ and
m⃗ as

h⃗ =
1

γµ0Ms

(
γµ0H0 − iωα −iω

iω γµ0(H0 +Ms −Hk)− iωα

)
m⃗.

Inverting gives the Polder susceptibility. Defining Meff = Ms −Hk (sign convention varies from
the source), a standard explicit form for χxx is [4].

χxx(ω,H0) =
Ms

(
H0 +Meff − i αω

γµ0

)
H0(H0 +Meff)−

(
ω

γµ0

)2
− i αω

γµ0
(2H0 +Meff)

. (1.20)

An equivalent parametrization often used in derivations introduces

χxx =
Ms

(
A+ i α ω

γ

)
(
A+ i α ω

γ

)(
B + i α ω

γ

)
−
(
ω
γ

)2 , A = H0 +Hu, B = H0 +Meff .

and with ∆H = 2 αω
γµ0

one can also write the damping term in the denominator as

− i ∆H
2 (2H0 +Meff). Let

D ≡ H0(H0 +Meff)−
( ω

γµ0

)2
+ i

αω

γµ0
(2H0 +Meff), N ≡ Ms

(
H0 +Meff + i

αω

γµ0

)
,

so that χxx = N/D. For small α, N ≈ Ms(H0 +Meff) and

ℑ(χxx) = −Ms(H0 +Meff)

αω
γµ0

(2H0 +Meff)[
H0(H0 +Meff)−

(
ω

γµ0

)2]2
+
[
αω
γµ0

(2H0 +Meff)
]2 . (1.21)
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Which is nothing but a Lorentzian equation

L(x) =
1

π
· Γ/2

(x− x0)
2 + (Γ/2)2

So basically we have proved that absorption in FMR when plotting ω vs Absorption is
Lorentzian. Also ω = γH, so when plotting magnetic field against absorption, we should again
see a Lorentzian.

It is interesting to note that these results are valid even at zero B. This implies that the
FMR output could even be across Bext = 0 point! The peak, however, could not occur
at Bext = 0. Implying there would be resonance like behaviour in few domains, despite having
no magnetic field, and just the anti-damping force.

1.5 Modulation-Induced Derivative

A
b
so
rp
ti
on

External DC B

small B modulation

Absorption with output
amplitude ∼ slope
around set B

set B at the moment

Figure 1.3: Variation of absorption with Modulation in B captured by Lock-in (inspiration: [5])

Generally, we are not able to directly measure the absorption from the sample directly due
to a lot of noise, especially 1/f noise from the components of the experimental setup. Hence, we
instead modulate the HDC with an HAC on top of it, with a frequency is high enough to avoid
1/f , but not in microwave region. Generally, around 200–100k Hz. This modulation is a small
fluctuation in HDC in the same direction. We then capture the amplitude of this oscillation
using a lock-in amplifier, discussed in detail in section 2.1. Small B oscillation generates an
absorption output which itself oscillates at same frequency as the modulation, with amplitude
proportional to the slope around the set HDC . This is explained visually, via Figure 1.3. We
then observe an output which rather looks like the derivative of the Lorentzian as described in
Figure 1.4.

1.6 Kittel Equation

it is not hard to see from (1.21), by comparing it to the Lorentzian equation, that the center of
this Lorentzian, where resonance should be situated is at the peak, around the center x0, which
is at,

ωres = γµ0

√
H0

(
H0 +Meff

)
. (1.22)
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Figure 1.4: Derivative of the Lorentzian, the expected output from a Lock-in Amplifier. Given
is the in phase output for direct FMR and out-of-phase output for absorption peak.

χ′′
xx(∆) ≈ const

∆2 + Γ2
, Γ ∝ 2αω

γµ0
= ∆H. (1.23)

We also already know this Γ is nothing but the FWHM of any Lorentzian equation and hence, we
can determine both α and ωres, from any FMR measurement. For the case, where modulation
is involved, we may simply look at the peaks of the derivative output, distance between which,
will give us the FWHM and the peak is, as obvious, at the point, it passes through zero (see:
Figure 1.4). Note that these equations let us predict that at higher frequencies, generally the

Figure 1.5: Derivative dependence on Modulation size (source: [4]). Notice how signal is ideally
supposed to be closer to 0.1∆H, however we tend to observe otherwise, due to finite modulation.

positive solution of ωres increases, leading to higher H0. As Γ ∝ ω, so FWHM is also expected
to increase. Since, Γ ∝ α also, it is ideal to have higher orders of frequencies to work upon.
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Chapter 2

Introduction to Experimental
Components

2.1 Lock-in Amplifier

Lock-in amplifiers enable detection of extremely small AC signals (down to nanovolts) even when
buried in large noise by using phase-sensitive detection, which isolates only the component of the
signal at a chosen reference frequency and phase. For example, a 10nV signal at 10kHz amplified
by 1000× becomes 10µV but is overwhelmed by 1.6mV broadband noise. Even with a high-Q
bandpass filter, the noise (50µV ) still exceeds the signal (10µV ), making accurate measurement
impossible. However, using a lock-in’s PSD with a very narrow detection bandwidth (e.g.,
0.01Hz), the noise drops to 0.5µV while the signal remains 10µV , yielding a signal-to-noise
ratio of 20 and enabling precise measurement[10].

Figure 2.1: SR830 DSP Lock-in Amplifier (source:[17])

Fundamentally we take an input signal and a reference signal, be it internal or external.
Then the lock-in will find the amplitude of the input signal’s component, which is of the same
freequency as the reference frequency. Internal signal. It does so, using a simple technique
called as PSD or Phase sensitive detection.

2.1.1 Working Principle

Let the input signal be:

S(t) = A cos(ωt+ ϕ) + noise(t)
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Reference signals:

RX(t) = cos(ωt) (In-phase)

RY (t) = sin(ωt) (Quadrature)

upon multiplication (Mixing), we get the in-phase and quadrature component as:

Figure 2.2: Lock-in’s interal working’s block diagram (source: [24]). (a) Analog lock-in: Signal is
split, mixed with reference, filtered, then digitized. (b) Digital lock-in: Signal is digitized first,
then multiplied and filtered digitally like SR830.

In-Phase component (X-Phase):

S(t) ·RX(t) = A cos(ωt+ ϕ) · cos(ωt)

Using identity: cos(a) sin(b) = 1
2 [sin(a+ b) + sin(a− b)], we get:

=
A

2
[cos(ϕ) + cos(2ωt+ ϕ)]

Quadrature component (Y-Phase):

S(t) ·RY (t) = A cos(ωt+ ϕ) · sin(ωt)

Using identity: cos(a) sin(b) = 1
2 [sin(a+ b) + sin(a− b)], we get:

=
A

2
[sin(2ωt+ ϕ) + sin(ϕ)]

DC terms here are kept, as they are the respective phase’s component of reference frequency.
After applying a low-pass filter (LPF), the high-frequency terms are removed:

X = LPF[S(t) ·RX(t)] =
A

2
cos(ϕ)

Y = LPF[S(t) ·RY (t)] =
A

2
sin(ϕ)

giving us:
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Amplitude: R =
√
X2 + Y 2 =

A

2
(2.1)

Phase: ϕ = tan−1

(
Y

X

)
(2.2)

2.1.2 Low-Pass Filter Equations

First-order RC filter:

H(ω) =
1

1 + iωτ
, τ = RC (2.3)

which taken for nth-order (to check for further harmonics):

Hn(ω) =

(
1

1 + iωτ

)n

Slope would be n×6 dB/octave (or set slope) for each nth order, implying higher order filters
would attenuate those harmonics, more aggresively. τ however, does not affect the slope, but
rather the response time of the capacitor, hence setting the cutoff frequency as f−3dB = 1/(2πτ)
for n = 1, adjusted for higher n. So, the time constant τ basically shifts the -3db point of the
filter, to start roll off early or later [24].

Filter properties considered for the settings in SR830 (τ = 1):

n Roll-Off (dB/oct) f−3dB fNEP fNEP/f−3dB 63.2% 90% 99% 99.9%

1 6 0.159 0.250 1.57 1.00 2.30 4.61 6.91
2 12 0.102 0.125 1.23 2.15 3.89 6.64 9.23
3 18 0.081 0.094 1.16 3.26 5.32 8.41 11.23
4 24 0.069 0.078 1.13 4.35 6.68 10.05 13.06

Table 2.1: Filter properties for nth-order RC filters with τ = 1. For same f−3dB, τ decreases
with n.

2.1.3 Minimum Settings

So if we want to get rid of 99% noise, i.e. a 1% settling accuracy, we need to use τ × 10.05
(n=4). Example: if we have a 1 MHz signal, then for a 1 kHz BW (n=4), τ = 69 µs. So for a
1% settle, it becomes 0.7 ms. A 1% Settling Accuracy implies, how closely the lockin output
settles to ±1% of the final value after a transcient. Also note:
Phase error: arg[H(ω)] = −n arctan(ωτ);
Amplitude error: |H(ω)| = 1√

1+(ωτ)2
. so error would be (1−|H(ω)|)×100%, as rest of signal

is preserved. Hence, a high τ should also be avoided under certain circumstances.

2.2 Schotkky Diode based RF detector

A Schottky diode forms a junction between a metal and an n-type semiconductor. Unlike a
regular p-n junction diode, it relies on the metal-semiconductor barrier to control current flow.
For Forward Bias, Electrons easily cross the barrier from semiconductor to metal, resulting in
low forward voltage drop (typically ∼ 0.2 − 0.3V ) and fast switching, allowing high frequency
(GHz) applications.

In particular, we are going to use BAT63–02V Infineon diode in combination desccribed
in Figure 2.3.

12



Figure 2.3: (a) Schotkky used as RF signal detector. (b) Output signal characterstics (source: [1])

Since Ideal Vdc for a perfect rectification should be Vpeak/π and for no rectification, should
be 0, We then say make up a number for how well it rectifies for our diode as:

rectification metric = 1− |(Vpeak/π − Vdc)/Vpeak|

defining how well is it rectifying at the given frequency (higher the better).
We then make a labview code, having used LF signal generator from our signal generator

and getting a trace using our 500MHz oscilloscope and calculate how well, the diode behaves.
Most ordinary diodes fail the test, in MHz regime, unlike Schotkky diode.

We then measure, general DC output using a simple voltmeter, and are able to recreate the
graph as in Figure 2.3.

Purpose of this circuit

We aim to convert the RF signal to DC signal with amplitude proportional to RF’s amplitude,
while not eliminating low frequencies, hence giving the ability to detect them using lock-in,
since we can not lock in with SR830 at frequencies above 102KHz. RF constant is thus chosen,
keeping the same in mind, to not eliminate lower frequencies.

• Bypass capacitor C is chosen to be 1 nF so that it has low ohmic capacitive reactance
up to 6 GHz. Hence we can not operate it above around 6GHz.

• Load resistance is chosen to be 1MΩ.

• Refer to [1] for details requiring the BAT63–02V Infineon diode.

NOTE: This particular Schottky fails to operate well above 6GHz when used without any
bypass capacitance and load resistance, as we measure the Vrms directly using a multimeter.

2.3 Helmholtz Coils

We can use general Biot-Savart Law, from which we know:

dB⃗ =
µ0

4π
· I d⃗l × r⃗

|r⃗|3

Which, for one coil, of Radius R at a distance z, on it’s axis is given by:

Bz =
µ0I

4π

∫ 2π

0

R2 dθ

(R2 + z2)3/2

where, r⃗ = −R cos θ ı̂−R sin θ ȷ̂+z k̂, and |r⃗| =
√
R2 + z2, and theta is angle between radius

r⃗ pointing inwards, and zk̂.
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Upon solving which and superimposing for both coils, at a distance d from each other
(z = d/2 for both), general formula for the magnetic field at the midpoint between two identical
coaxial circular coils becomes:

Bcenter =
µ0NIR2(

R2 +
d2

4

)3/2
(2.4)

Figure 2.4: Helmholtz Coil’s AC in space magnetic field, which should be taken care of while
doing FMR. (source: virtuelle-experimente.de)

Hence, it is not hard to see, why coil placement must be as ridgid as possible, and also,
how placing a gaussmeter at a different position than sample, would lead to different result,
which should be precalibrated experimentally, by placing the gauss probe (used to record B at
every point in FMR) at same position as the sample, and then taking a similar set of readings,
by placing it slightly above the sample, in range of Magnetic Field of interest. Notice, the
calibrated difference is not supposed to be constant, since magnetic field difference between two
points is dependent of the current through coils.

2.4 Coplanar Waveguide and Impedance Matching with BNC

2.4.1 Calculating CPW Impedance

A coplanar waveguide is a planar transmission line where the signal conductor and the two
ground conductors lie on the same surface of a dielectric substrate. The signal strip is separated
from the grounds by narrow slots. We will keep our sample on top of the transmission line
to allow microwave to pass through the surface of the sample. Most of the electric field is
concentrated in the slots between the center strip and the grounds, with some fringing into
the air above. The magnetic field loops around the center conductor, confined mostly in the
slot regions. This current produces an oscillating magnetic field Hrf in the slot regions, with a
strong in-plane component right above the gaps. The oscillating field couples to the sample’s
magnetization M , acting as the driving torque in the Landau-Lifshitz-Gilbert (LLG) equation.
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Note that sample thickness interacting is limited by microwave skin depth (typically ∼ 1−10µm
at GHz frequencies) i.e. microwave travels only at the surface in contact with the CPW[3].

sample

s s

w

t

εr h

Figure 2.5: Coplanar Waveguide Side view.

Using the equation 3.8.3 in [16], We have used PVC board with copper, hence εr ≈ 3.2.
Assuming it is thick enough, we can say h ≥ 3w. The copper layer, at the top and bottom of
PVC can be assumed to have, t ≪ ht. Estimate the Effective Permittivity εe as:

εe ≈
εr + 1

2
≈ 3.2 + 1

2
= 2.1.

Since ground plate at the bottom of PVC is also covering full area, we can call it approxi-
mately an ideal CPW. THen we can define the elliptic modulus k as:

k =
w

w + 2s
(2.5)

with w being the stripe width, and s being the gap between strip and each ground plate.

Z0 =
30π
√
εe

K ′(k)

K(k)
, (2.6)

i.e eqn 3.8.3 [16], Where K(k) and K ′(k) = K(
√
1− k2) are complete elliptic integrals approx-

imately given by eqn 3.8.5 and 3.8.6 [16] as:

K ′(k)

K(k)
≈


ln
[
2 (1 +

√
k)/(1−

√
k)
]

π
0 ≤ k ≤ 0.707,

π

ln
[
2 (1 +

√
k)/(1−

√
k)
] 0.707 < k < 1.

(2.7)

2.4.2 50Ω Impedance Matching

coplanar waveguide (CPW) behaves as a transmission line with some characteristic impedance
Z0, which depends on its geometry and substrate. Common coaxial cables (like BNC cables)
are designed with Z0 ≈ 50Ω. If the impedance is not matched at the signal transitions between
the BNC cable and the CPW, part of the wave will be reflected at the interface instead of being
fully transmitted with reflection coefficient:

Γ =
Zline − Z0

Zline + Z0
.

Hence, putting Z0 = 50Ω in Equation 2.6 and combining with Equation 2.7, we get,
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K ′(k)

K(k)
=

Z0
√
εe

30π
=

50
√
2.1

30π
≈ 0.75

ln
2(1 +

√
k)

1−
√
k

= 0.75π =⇒
√
k ≈ 0.81 =⇒ k ≈ 0.65

k =
w

w + 2s
= 0.65 =⇒ w

s
≈ 3.7

giving us the ratio between strip width and gap between them as 3.7. There are plenty of online
calculators which are better at such calculations, with alot more parameters, kept in mind, that
one may use. A VNA (Vector network analyser) would be a good idea to use, if available, to
directly calculate impedance.

2.5 Bias Tee

A microwave RF bias-tee is a three-port network that merges DC and RF signals onto a single
50Ω line (or splits them apart) by exploiting the frequency-selective reactances of an inductor
and a capacitor. At RF frequencies the inductor behaves as an open, while at DC it’s a short;
the capacitor is a short at RF and an open at DC [15]. Denoting the operating angular frequency
ω = 2πf , the two key impedances are

ZL = j ω L, ZC =
1

j ω C
.

for a properly working bias tee, one requires:

ZL(ωRF)| ≫ Z0, |ZC(ωRF)| ≪ Z0,

so that at fRF the DC port (through L) is effectively open and the RF port (through C) is
effectively a direct pass. The common port is able to see only the 50ohm system impedance
over the GHz band, yielding negligible reflection. Impedance matching around GHz therefore
reduces to choosing:

L ≫ Z0

ωRF
, C ≫ 1

ωRF Z0
.

RF Only RF + DC

DC Only

Figure 2.6: Basic bias tee circuit for RF/DC signal separation
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Chapter 3

Setup

3.1 Spectrum Analyser Based FMR

Figure 3.1: FMR using Spectrum Analyser general Overview.

• The sample is kept on the waveguide. A DC magnetic field is applied on the sample along
the long axis and face down on the waveguide. RF at 5.5GHz is provided and received
through the R&S Spectrum Rider FPH.

• Output is set to 6dBm at 5.5GHz through R&S SMB100A RF port. This corresponds to
2.9dBm at the waveguide and -0.2dBm at the spectrum analyser as per cable power loss
as discussed in the next section (read precautions section first point).
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• Current is provided to the Electromagnet to set the DC Magnetic field (HDC).

• A sample is provided with the RF (in direction of HDC , hence making the HRF perpen-
dicular to HDC).

• Spectrum Analyser then picks up the amplitude of the frequency’s peak and amplitude
through the inbuilt set marker position feature.

• HDC vs RF received amplitude is plotted and we expect to see a lorentzian absorption
peak around the HDC corresponding to resonance.

3.2 Lock-in Amplifier Based FMR

Figure 3.2: FMR using Lock-in Amplifier general Overview.

The setup is fundamentally similar to the one used in the Spectrum Analyser case, with
both measurement modes applicable here as well. Key differences and operational details are
outlined below:

• RF Source: A continuous RF signal is sent at 9.7 dBm and 5.5 GHz.

• Modulation Coils: Two modulation coils are directly affixed to the cores or body of the
electromagnet. This configuration aims to generate an alternating magnetic field (HAC)
perpendicular to the static field (HDC). See Figure 3.3.

• AC Field Generation: Current is supplied to both coils in the same direction (clock-
wise), producingHAC. This current is modulated as a sine wave using the reference output
of the lock-in amplifier.
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Figure 3.3: Helmholtz coil / modulation coil configuration — shown on the left (source: Mag-
netic Lab @ AUB) and in our lab on the right.

• Reference Frequency: Set to approximately 80 Hz, chosen to avoid harmonics of power
line frequencies (50/60 Hz).

• Field Modulation Principle: A strong static magnetic field (HDC) is swept, while a
small oscillating field (HAC) is superimposed. Near resonance, this modulation causes the
RF absorption to vary slightly, resulting in amplitude modulation of the RF signal at the
same frequency as HAC.

• Detection Mechanism:

– A Schottky diode rectifies the RF signal, converting amplitude fluctuations into a
voltage signal.

– The resulting voltage contains a small AC component at the modulation frequency.

– This AC component is extracted by a lock-in amplifier tuned to the reference fre-
quency, isolating the signal from background noise and DC offsets.

• Signal Interpretation: The lock-in output is proportional to the slope of the absorption
curve at each point in the HDC sweep, enhancing resonance detection sensitivity.

• Phase Adjustment: The lock-in’s X (in-phase) component typically exhibits a sine-
wave-like response. The lock-in phase must be adjusted to account for the phase difference
between the reference sine wave and the actual HAC received.

3.3 Nanovoltmeter Based FMR

• The setup is similar to the Spectrum Analyzer case, with the key difference being the
detection method for RF amplitude.

• Instead of using a spectrum analyzer, a Schottky diode is employed to rectify the RF
signal and convert it into a DC voltage.

• The DC output from the Schottky diode is directly proportional to the amplitude of the
RF signal, providing the desired measurement quantity.

• A nanovoltmeter is used to measure this DC voltage, allowing detection of amplitude
variations near the resonance region.

• A bias tee is introduced to eliminate any residual AC component from the RF signal
before it reaches the nanovoltmeter, preventing potential damage to the equipment.
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Figure 3.4: FMR using Nanovoltmeter general Overview.

• The RF signal is terminated after the Schottky diode, and only the DC component is
extracted for measurement.

• A similar absorption peak is expected as in the spectrum analyzer case, corresponding to
resonance-induced changes in RF amplitude.

3.4 Setting Up Components

3.4.1 Electromagnet Description

Currently the Hall probe and current supply to coils are controlled by the Holmarc Constant
Current supply unit. It also has a temperature sensor built into the coil connected via Coil 1
wire. See Figure 3.5

3.4.2 BNC Cables and Connectors Power Loss

A BNC cable is a coaxial cable with a bayonet-style connector used for transmitting RF signals.
It ensures secure, low-loss connections in lab setups, oscilloscopes, and communication systems.
The central conductor carries the signal, while the outer shield blocks interference, maintaining
consistent impedance, typically 50Ω for clean signal flow. However we do infact notice loss in
our BNC as in Figure 3.6 and Table 3.1. The loss increases as the frequency increase, and follow
power law emperically. This may be explained using skinn effect, that at higher frequencies,
current flows only near the surface of the conductor. This reduces the effective cross-sectional
area, increasing resistance and hence conduction loss. The skin depth δ scales as:
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Figure 3.5: Holmarc CCSU with its wiring and unit description.

Figure 3.6: BNC cable + connector pair loss vs frquency for our setup, fit with power law.

δ ∝ 1√
f

it may also be explained by dielectric loss to insulating material at higher frequencies.

Freq (GHz) 1 2 3 4 5 6 7 8 9 10

Loss (dB) 1.36 2.09 2.33 2.72 3.09 3.32 4.50 5.51 8.03 12.51

Table 3.1: Measured insertion loss of BNC cable across RF frequencies for reference.

3.4.3 Modulation coils for our setup and measuring B using Lock-in

Purpose of modulation coil is to produce HAC , as discussed in section 1.5. Hence, we input into
it, a reference frequency via signal generator/lockin output. Since, current provided is AC, as
per Equation 2.4, B would also be AC.

• Resistance: ∼ 7Ω each, i.e. 3.5Ω combined in parallel.

• This output is received by our coils with combined resistance of 3.5Ω receives a current
of 150mA rms, i.e ∼ 1.5v by calculation as well as in Oscilloscope
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• Upon passing 1.5V DC through both the coils in parallel, B received 0.83mT DC.

• When using the lock-in amplifier at a low frequency of 0.1Hz, we notice that the gauss
probe in HDC mode registers 1.5mT peak to peak.

• From the previous point, if we directly input the gauss probe output to lock-in signal
input, we notice, 1.5mT corresponds to 0.13mV in gauss probe output ‘R’ reading.

• Then increasing it to 80Hz results in 0.09mV in gauss probe output ‘R’. This can be
interpolated to 0.95mT peak to peak oscillation of HAC at 80Hz from lock-in sine out at
5V.

This way, we have been able to map output B at our operating 80Hz frequency of the coils, using
lock-in amplifier, combined with direct gauss probe output. Shape of the output can also be
traced by differing the reference frequency from the coil’s frequency by, small amout ∼ 0.05Hz,
and plot the in-phase component in labview.

Figure 3.7: Placement of sample on CPW in Electromagnet between Modulation coils.

Kindly note we have used coils in Parallel in our case, however, a series connection might
be better since resistance adds up and is better accepted by lock-in as a load due to higher
impedance, and, would also ensure equal current flowing through both coils.

3.4.4 Lockin Settings

Lockin settings currently used are as follows:
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Choice of the settings justified as follows:

• Input connection type is put to Single ended Voltage since we are using only single input
A.

• Coupling is there to reject the DC component as it would not be reflected by the lockin.

• Input Shielding is chosen to float because:

– Cleaner signal, especially for low-level AC measurements, as experienced.

– Avoid baseline noise floor which was coming on using ground mode creating a DC
offset.

– minimize EMI coupling and ground loops.

• Time constant is chosen such that it should be greater than τ = 1/(2πfmin) and hence,
anything greater than 1.989ms should be fine for 80Hz. As a rule of thumb, output settles
to 99% of final value in about 5× τ . Hence it is chosen as 10ms

• Low pass filter slope is chosen as standard 12db/oct as we are currently not concerned
with speed/responsiveness, but rather care more about noise rejection.

• Sync filter is not turned on since our output is jittery, however, it might be better to use if
we are sure we are modulating a signal with a clean reference, i.e modulation is confirmed
to give a clean sine HAC .

• Low noise Dynamic reserve is chosen assuming signal, when once received is not buried
under noise. However, it might be better to use High Reserve for better noise attenuation.

• Reference signal is chosen to be 80Hz internal as discussed already and Sine output cor-
responds to 5V (rms) i.e. 14.14V peak to peak, given high impedance load as per the
manual for SR830 and as measured using the multimeter when no load.

• Reference phase is decided from the output of gauss probe when put into lockin and theta
provided. We are assuming this is completely the phase due to induction of the coils as
can be calculated using ϕ = tan−1(ωL/R). This hopefully restores the signal to phase
component X completely. One may however not apply this phase and still expect residual
signals to appear in the Y component. Ideally, One may use Autophase button on lockin
while they are at a known B with sample, on, where the FWHM of sample exists, i.e a
peak exists.

3.5 Precautions and Notes

3.5.1 Precautions

• Never let FPH Spectrum Rider ever receive more than 0dBm input. Leads to
instrument failure. Verify the same using per cable dB loss whenever exceeding 0dBm
from the signal generator. Check the section for per cable loss in this pdf.

• Ensure the modulation coils are behaving correctly using the oscilloscope to measure the
voltage across them. Leads to unexpected results very often. Prefer to use the probe that
came with the R&S oscilloscope directly instead of connecting via a BNC cable to avoid
reflections.

• Do not let the temperature exceed 40oC in the Electromagnet coils. Keep the Chiller and
Holmarc CCSU unit on and connected to keep a check on the same, if using setup B and
no alternate to measure temperature is there.
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• Use Bias tee as a filter to clear out any rf component before measuring the DC using
nanovoltmeter.

• Clean the Waveguide using IPA before each use. Use Vinegar for etching Oxide layer on
Waveguide. Handle samples with care and vacuum desiccate when not in use.

3.5.2 Notes

• Always run the instruments for 10 minutes as warmup before final measurements.

• Keep in mind that each T connector splits the incoming wave’s voltage into half for the 2
outgoing waves given impedance matches.

• Make sure every single part of circuit, including the oscilloscope (if any), waveguide
and Schottky diode are all 50Ω impedance as, are the BNC cables, since any form
of impedance mismatch results in power loss due to reflection. Oscilloscope should be set
to 50Ω impedance when used with BNC.

• Lots of wires and cables and connectors are faulty. Please check loose or faulty connections
before concluding.

• Make sure the sample is well magnetized.

3.6 Alternate Setups and Labview Codes (Lab Specific)

Figure 3.8: Variants of the setup using both Holmarc CCSU done earlier and the Using the R&S
Constant Current Supply for the coils and Keithley nanovoltmeter for checking the Magnetic
field directly with a lot more precision on the right side to achieve 0.1mT precision.

Core idea being removal of the Holmarc Constant Current Supply Unit (Setup A) due to
its slow and inaccuracy in setting the significant digits of Current. Hence, we instead use setup
B as follows:

• R&S Power Supply NGL202: Used as a constant current source on Channel 1.

• Keithley Nanovoltmeter 2182: Employed for Gauss probe measurements. The Gauss
probe from Lakeshore can be connected directly, and the voltage across the respective
ports measured using the nanovoltmeter to determine the magnetic field B, as per the
precalibrated values. Kindly refer to Shiva Folder for calibration details. For the current
source, we continue using the Gaussmeter itself by tapping the respective wires from the
probe.
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• Arduino-based Thermistor Measurement: The thermistor embedded in the coils is
directly connected to the Arduino. A known resistance is placed in series across the A0
pin, ground, and 5V supply. Refer to Sarthak Folder for the implementation details.

3.6.1 Labview Codes

Closed Loop Gauss probe to EM R&S Power Supply Drivers

Mainly, with Setup B in mind, kindly find closed loop drivers made for setting Magnetic field
using the R&S Power supply and the original Holmarc Gauss probe, under
Abhay Saxena/Power Source Based Electromagnet.
Drivers folder contains, the respective drivers that may be used directly to set the B. First
import the
set B hall probe rfs int stop driver.vi

Program to connect with both gauss probe and the power supply. Use the same program to
stop the connection. Then, to run the program, kindly use the
set B hall probe rfs driver.vi.

FMR using spectrum analyser

For utilizing Setup A (Holmarc CCSU case), the relevant codes are located under:

• Abhay Saxena/FMR spectrum analyser/FMR Spectrum Analyser measure B: This
version measures the magnetic field B using the Gauss probe during every run, alongside
spectrum peak analysis.

• Abhay Saxena/FMR spectrum analyser/FMR Spectrum Analyser no B: This variant
skips the Gauss probe measurement of B during each run and focuses solely on spectrum
analysis.

No combined code for setup B. Kindly use Shiva’s Nanovoltmeter based Gauss probe driver,
Sarthak’s Temperature sensor code and given drivers in Abhay Folder for Electromagnet to
combine the same and achieve 0.1mT precision. Currently codes are focused on checking for
signal hence we do not use any gauss probe and roughly Change the iteration of current by
23mA from the current supply (corresponding to 0.1mT change roughly) for quick run through.

FMR using Lock-in Amplifier

Setup A: Holmarc CCSU Case:
The code for Setup A is a modified version of the original LabVIEW program found in
Piyush Folder. In this version:

• The Set B drivers have been replaced to allow finer resolution in magnetic field B.

• The setup utilizes the Holmarc CCSU system, as expected for Setup A.

• The LabVIEW program is located at:
D:/Abhay Saxena/FMR lock-in/FMR Lock-in setB/FMR Lockin V3.vi

Setup B: Preliminary FMR Scans:
Unlike the ideal Setup B, the current implementation does not integrate Shiva’s Nanovoltmeter-
based Gauss probe driver and Sarthak’s Arduino-based temperature sensor. Instead:

• The code estimates magnetic field B using a general conversion factor of 0.0023 mA per
0.1 mT, which may vary depending on the pole gap.
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• Constant current is varied across predefined steps, as precise field resolution is not critical
during preliminary FMR signal detection.

• The program displays all four lock-in outputs: X, Y, R, and θ.

• The LabVIEW program is located at:
D:/Abhay Saxena/FMR lock-in/

FMR Lock-in current direct double channel rfs XYRtheta/FMR Lockin V3.vi

FMR using Nanovoltmeter

The LabVIEW code for nanovoltmeter-based FMR measurements is located at:
Abhay Saxena/FMR nanovoltmeter/FMR nano.vi

Note: Integration of the Gauss probe with the nanovoltmeter has not yet been implemented.
Magnetic field B is therefore not measured in real-time within this version of the code.

3.7 Description of CoFeB sample

Sample under consideration for our testing purposes is CoFeB — Co40Fe40B20 (Cobalt Iron
Boron) 10 nm Film on Silica Substrate, deposited via magnetron sputtering.

• Substrate: Thermally grown amorphous silica (SiO2) is used for excellent dielectric iso-
lation.

• Saturation magnetization (Ms ≈ 1.2T ) at room temperature.

• Interfacial perpendicular or in-plane magnetic anisotropy can be engineered via post-
deposition magnetic thermal annealing (MTA).

• Intrinsic Gilbert damping constant α as low as 0.005–0.01, yielding narrow FMR linewidth
(∆Hpp < 5 Oe), which is a little problematic for FMR.

• Amorphous nature suppresses grain—boundary scattering, improving uniform precession

• Core material in spin—transfer torque magnetic random access memory (STT—MRAM)
free and reference layers responsible for Non—volatile memory in smartphones, automotive
electronics, and data centers.

• Enables spin—orbit torque switching when paired with heavy metal underlayers (Pt, Ta,
W), also making useful for ST-FMR.
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Figure 3.9: Results from EPR of CoFeB 10nm sample on Si substrate as Gauss (x-axis) vs EPR
output (20 Gauss modulation at 10KHz) from IISER Bhopal central EPR facility, with a high
SNR 9.45GHz cavity. Note that the dip in the secon peak is still not explained well, but most
certainly accounts for the stretched teflon tape used to bind the sample to EPR rod. Given is
in-phase output for direct FMR input, and out-of-phase output for Absorption Peak.
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Chapter 4

Results and Discussions

4.1 Nanovoltmeter and Spectrum Analyser Based FMR

Figure 4.1: Output of Spectrum Analyser based FMR with 1/f drift without any sample,
highlighted in red.

Figure 4.2: Output of Nanovoltmeter based FMR with time with sample, with noise level dips.
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The output is consistantly there at these repeating cycles of very low frequency and this is one
of those cycles catured in Figure 4.1. Electron drift causes the net movement of charge carriers
under an applied electric field, and in solid-state components—especially semiconductors and
nanostructures—this drift is modulated by scattering, mobility, and structural disorder. 1/f
noise, or flicker noise, emerges from a superposition of slow, stochastic processes such as charge
trapping/detrapping at interfaces, mobility fluctuations due to phonons or defects, and time-
dependent variations in junction conductance, especially in percolative or thin-film systems.

4.1.1 Set vs Average B

Figure 4.3: Set Current in coil, vs average B for Holmarc Constant current supply.

Set vs Average program is kept to know how well we are able to set the Magnetic field, and
how well it stays constant. We then plot the average of 100 runs per set B, and plot to fint
that the output is linear, in multiples of 0.5mT. However, further resokution is not achieved by
Halmarc Constant current supply, and hence we instead opt for R&S constant current supply
which allows us to achieve 0.1mT precision using our self written drivers.

Since the output from Spectrum amplifier tends to fluctutate alot, we instead try to average
the output at a set B, since set vs average B is consistant for a particular B. For the reason we
need to have a lockin Amplifier, i.e. having a chopping, to eliminate 1/f noise, we notice the
same noise for the case of spectrum analyser. For the case of nanovoltmeter, however, due to
lack of time, we could not verify the same.

4.2 Lock-in Amplifier Based FMR

The issue we faced in case of Spectrum Analyser is easily eliminated using a lockin amplifier,
where we dont see any such drift, just some random noises points (easy to eliminate).

From Figure 4.4, it is easily visible how setting our phase has allowed us to capture all output
in in-phase (X) component, and get, only noise level output in out-of-phase (Y) component.
The signal in X-phase is clearly the out-of-phase output for dip in output, implying our output
is shifted in phase by 180o. This output was achieved at the frequency and lockin settings as
mentioned in Figure 4.5.

If we plot the output of X-phase, from Figure 4.4, where the x-axis is not set B, but
current actually, where 25mA current corresponds to 0.1mT difference and 2.36mT is core
magnetization, hence an offset. This was done as an approximation, since taking gauss probe
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Figure 4.4: Output from lockin amplifier with CoFeB 10nm sample from all four channels X, Y
R and θ components.

Figure 4.5: Settings used for Figure 4.4. The FMR was done at 5.5GHz with 0.5mT
modulation at 80Hz.

readings every run was causing 1s delay per step and can be fixed with new nanovoltmeter
based drivers for gauss probe. We fit the output with the the derivative of (1.21):

Vx(B) = scale ·

 1

1 +
(
B−B0−δ

Γ/2

)2 − 1

1 +
(
B−B0+δ

Γ/2

)2 + C

 (4.1)

Where, δ is the modulation amplitude (0.5mT), C is a constant baseline offset, scale is an
overall amplitude scaling factor, Γ is the full-width at half-maximum (FWHM) and B0 is the
resonance peak.

The fit can be seen in Figure 4.6, where we find, α = 0.0071 and B0 = 0.27. This however,
raises suspicion in validity of our output, since the B0 is very close to B = 0, unlike for the
case of ESR output with B0 ≈ 26mT which is around 10 times our current B0. We also having
sweeped through region around B = ±26mT , did not find any peak.Even though we recieved no
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Figure 4.6: FMR output fitted with B after conversion from B to magnetic field assuming
25mA ∼ 0.1mT and 2.36mT offset from gauss probe, measured when passing through 0mT
point.

such signal without the sample on, from FMR, this disripancy might be due to the absorption,
which results potentially from absorption of some component, at B = 0. It might be anything
including the LCR of the Coplanar waveguide due to some deformity, or Helmholtz coils not
being stuck properly and hence reacting on swtiching B, or some other reason. Or there is
a problem with unit conversion from ESR output to our setup’s output in mT. It is equally
possible that low α of CoFeB might be a reason we are not able to find the peak at expected
position due to bad least count and this is something else. Hence, even though the output looks
fine, it should not be called as FMR signal from the CoFeB sample without further investigation.
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Chapter 5

Theory of ST-FMR

Due to time constraints, only the theory of ST-FMR was covered in given time. Here we describe
the working principles and ideal setup. Most of the contents in this chapter, are based
on [18] and Spintronics course lecture notes by Prof. Kuntal Roy.

5.1 Magnetoresistance

Magnetoresistance describes how a material’s electrical resistance changes under an applied
magnetic field. Two common metrics are:

• Change in resistance: ∆R(H) = R(H)−R(0).

• Magnetoresistance ratio:

MR(H) =
R(H)−R(0)

R(0)
× 100%, (5.1)

where R(H) is the resistance in field H and R(0) is the zero-field resistance.

Geometrical Magnetoresistance in semiconductor, is induced due to Lorentz force:

σ =
σ0

1 + βσ2
0R

2
HB2

; MR(B) = β
R2

HB2

ρ20

where σ0 is zero-field conductivity, RH is Hall coefficient, β is the Field-dependent scattering
factor. For further discussion, let’s assume longitudinal direction is x̂, the transverse direction
is ŷ and the out-of-plane direction is ẑ.

5.1.1 Anisotropic Magnetoresistance (AMR)

• AMR is the change in the resistivity of a ferromagnet depending on the angle between the
electric current J⃗c and the magnetization M⃗ .

• First observed in Fe and Ni (1850s).

• Origin is spin-orbit coupling (SOC): scattering of conduction electrons depends on the
relative orientation of their spin to the magnetization direction. Hence we can say it
is due to anisotropic mixing of spin-up and spin-down conduction bands due to
spin-orbit coupling.
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Longitudinal Resistivity (main equation)

The resistivity along the current direction x̂ is:

ρxx = ρ⊥ + (ρ∥ − ρ⊥) cos
2 ϕ (5.2)

ϕ is angle between current density J⃗c and magnetization M⃗ , ρ∥ is resistivity when M⃗ ∥ J⃗c and

ρ⊥ is resistivity when M⃗ ⊥ J⃗c. Note here that:

• ρ is maximum when M⃗ ∥ J⃗c ⇒ ρ = ρ∥

• ρ is minimum when M⃗ ⊥ J⃗c ⇒ ρ = ρ⊥

This variation is what we call as AMR. Also, since current density would be defined seperately
for spin up, and down currents, ρ↑(θ) ̸= ρ↓(θ). One may measure AMR using Planar Hall effect,
as discussed ahead.

5.1.2 Complete picture of Transverse Resistivity in Ferromagnets

The total transverse resistivity ρxy includes contributions from:

• Ordinary Hall Effect (OHE): R0Hz

Originates from Lorentz force acting on charge carriers in an external magnetic field Hz

(out-of-plane). It is dominant in non-magnetic materials or at high fields and independent
of magnetization direction.

• Anomalous Hall Effect (AHE): RAMz

Originates from Spin-orbit coupling and intrinsic band structure effects in ferromagnets.
Proportional to the out-of-plane component of magnetization Mz.It is often nonlinear in
M , and can dominate at low fields in magnetic materials. Discussed in section 5.2.

• Planar Hall Effect (PHE): (ρ∥ − ρ⊥) sinϕ cosϕ
a phenomenon where an in-plane magnetic field generates a transverse voltage in a mate-
rial, and the voltage is dependent on the angle between the magnetic field and the applied
current. Arises from the angular dependence of resistivity due to symmetry of the AMR
tensor as discussed in this section with Longitudinal Resitivity being the other component
of AMR tensor. Depends on the in-plane angle ϕ between current and magnetization.

Combining all terms:

ρxy = R0Hz +RAMz + (ρ∥ − ρ⊥) sinϕ cosϕ (5.3)

Here, Hz is out-of-plane magnetic field, Mz is out-of-plane magnetization, ϕ is in-plane an-
gle between current J⃗c and magnetization M⃗ , R0 is the Ordinary Hall coefficient and RA is
Anomalous Hall coefficient.

5.1.3 Giant Magnetoresistance (GMR)

Giant magnetoresistance (GMR) is the large change in electrical resistance of a multilayer or
spin-valve structure when the relative magnetization of adjacent ferromagnetic layers switches
between parallel (P) and antiparallel (AP) alignment.

GMR =
RAP −RP

RP
× 100%, (5.4)
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Two-Current Model for CPP

We assume that the conduction electrons split into two independent channels labeled ↑ (say,
majority spin) and ↓ (say, minority spin). Each channel has its own resistivity in a single
ferromagnetic layer then, as ρ↑ (low scattering here) and ρ↓ (high scattering here). Layers are
assumed to be perfectly spin-conserving i.e. no spin flips occur within a layer. Then resistance
for parallel and anti-parallel alignments as given in Figure 5.1, for an FM/NM/FM layer (spin-
valve) can be give by:

RP =
2R↓↑ ·R↑↑
R↓↑ +R↑↑

RAP =
R↓↑ +R↑↑

2
(5.5)

where, in R↓↑, first arrow represents the electron spin and the second one represents magneti-
zation direction. This can be easily shown if we assume that, even for N repetitions of F/N
bilayers (F = ferromagnet, N = nonmagnet), each spin channel flows through a series of layer
resistances but the two channels remain in parallel overall. Notice, that we are treating

R↓↑ = R↑↓, R↑↑ = R↓↓.

It is easy to notice that, for any R↓↑ ̸= R↑↑, RP , RAP through simple algebra. As a metric
for Magnetoresistance, we define:

GMR =
RAP −RP

RP
=

(R↑↑ −R↑↓)
2

4R↑↑R↑↓
(5.6)

Model equally applies to CIP case, as defined ahead, however, it is not as straight forward as
CPP case, and hence, is not discussed here.

Figure 5.1: Resistor model of spin-valve for giant magnetoresistance effect in CPP case. FM
= ferromagnetic, NM = non-magnetic (Source: Guillom. (2006) Wikimedia Commons).

Current-In-Plane (CIP) Geometry and the Boltzmann Transport Equation

In the CIP geometry, the applied electric current flows parallel to the plane of the layers in a
multilayer stack. Electrons undergo numerous scattering events within the bulk of each layer
and at interfaces between layers. The dominant length scale is the electron’s mean free path λ.

The semi-classical Boltzmann Transport Equation (BTE) model describes the non equi-
librium electron distribution function fσ(r⃗, k⃗) for spin channel σ (↑ or ↓). The core equation in
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Figure 5.2: V is applied voltage between conductors (red), green and yellow: schematically
ferromagnetic and non magnetic layers (Source: Alex-engraver (2011) Wikimedia Commons).

the relaxation time approximation (RTA) is:

v⃗ · ∇rf
σ +

q

ℏ
E⃗ · ∇kf

σ = −gσ(k⃗)

τσ
(5.7)

where:

• v⃗: Electron group velocity

• f0: Equilibrium Fermi-Dirac distribution

• gσ(k⃗) = fσ(k⃗)− f0(ϵk): Deviation from equilibrium

• E⃗: Applied electric field

• q: Electron charge

• τσ: Spin-dependent relaxation time (the average time between scattering events for a
spin-σ electron)

The solution to Eq. 5.7 yields the spin-dependent current density ȷ⃗σ, leading to a local
spin-dependent Ohm’s law ȷ⃗σ = σσE⃗. The model incorporates spin-dependent bulk scattering
(1/τσ) and interface scattering through boundary conditions, modeling the complex in-plane
transport paths in CIP geometry [23].

Current-Perpendicular-to-Plane (CPP) Geometry and the Valet-Fert Formalism

Figure 5.3: Electronic density of states (DOS) in magnetic and non-magnetic metals, for AP
case, splitting for electrons with different spin directions for each layer (Source: Alex-engraver
(2011) Wikimedia Commons).
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In the CPP geometry, the current flows perpendicular to the layers as described in Fig-
ure 5.1. Every electron must cross all interfaces. The key phenomenon is spin accumulation,
a buildup of spin polarity at interfaces, which relaxes over the spin diffusion length lsf , the
dominant length scale (lsf ≫ λ).

The Valet-Fert formalism is a macroscopic diffusive model that describes this via the
spin-dependent electrochemical potential µσ(z). It consists of two coupled equations:

1. Spin-dependent Ohm’s Law: The current density for each spin channel is driven by the
gradient of its electrochemical potential.

jσ = −σσ

q
∇µσ (5.8)

2. Continuity Equation: The divergence of the spin current is proportional to the local spin
loss due to spin-flip scattering.

∇jσ = − q

τσsf
(µσ − µ−σ) = − q

NF

Dσ

lσsf
2 δµ (5.9)

where:

• σσ: Spin-dependent conductivity

• τσsf : Spin-flip scattering time

• Dσ: Spin-dependent diffusion constant

• lσsf =
√

Dστσsf : Spin diffusion length

• NF : Density of states at the Fermi level

• δµ = µ↑ − µ↓: Spin accumulation

These equations are solved for the entire multilayer stack with boundary conditions enforcing
current continuity. The total resistance is found from the change in the average potential
µ = (µ↑ + µ↓)/2. This formalism is the standard model for CPP because it explicitly solves for
the spin accumulation that governs the physics [20].

5.1.4 Tunneling Magnetoresistance (TMR)

If we use an insulating barrier instead of a NM conducting layer between the two FM layers, as
was the case for GMR, we still end up observing magnetoresistance effect called as tunneling
magnetoresistance or TMR. Recent advancements in TMR have lead to immidiate application
in magnetic storage devices, especially hard disks.

One easy way to have a rough idea about TMR, would be to look at the density of states.
We assume that initially, both the DOS have same Fermi energy, and upon application of an
external voltage Va, we get one level raised above the fermi energy level Ef by the eVa. The
main assumption is that the spins are conserved during the transport. Conductance of each
spin direction is then, determined by the density of states for each spin as:

Gσ1σ2 ∝ Nσ1
L Nσ2

R (5.10)

for σ1 being spin of carrier and σ2 being the magnetization of FM layer.
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Figure 5.4: DOS demonstrating tunneling process between ferromagnetic subbands for P and
AP configurations. Condunction Channels (tunneling) are shown via coloured markers with
thick ones for majority (↑) carriers. The spin-resolved density of states have exchange spin
splitting, ∆ex (inspiration: [12]).

Notice, the ∆ex, or the exchange spin splitting energy causes a gap for AP case, given the
Va = 0. Hence, the tunneling current is higher for parallel case, given majority carriers are ↑
for the case of Figure 5.4. TMR is then defined, just like GMR, as:

TMR =
RAP −RP

RP
=

GP −GAP

GAP
(5.11)

Which, combined with (5.10), gives,

TMR =
N↑

LN
↑
R +N↓

LN
↓
R −N↑

LN
↓
R −N↓

LN
↑
R

N↑
LN

↓
R −N↓

LN
↑
R

giving,

TMR =
2PLPR

1− PLPR
(5.12)

for,

Pi =
Nσ1

i −Nσ2
i

Nσ1
i +Nσ2

i

with σ1 being majority carrier (↑ in previous equation), and σ2 being the minority carrier and
i being the ith layer L or R.

5.2 Spin and Anomalous Hall Effects

5.2.1 Spin-Orbit Coupling Fundamentals

Spin-orbit coupling (SOC) is a relativistic interaction that couples an electron’s spin angular
momentum to its orbital motion. This interaction arises from the magnetic field experienced
by the electron in its rest frame due to the relative motion of the nucleus. SOC is fundamental
to understanding various Hall effects in condensed matter systems, particularly the spin Hall
effect (SHE) and anomalous Hall effect (AHE).
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Figure 5.5: Comparing OHE, AHE and SHE (source: lecture slides, Spintronics Course at
IISER Bhopal, Dr. Kuntal Roy.)

Atomic Spin-Orbit Coupling

For hydrogen-like atoms with nuclear charge Ze, we begin with the Coulomb potential:

Vint = −Ze2

r

In the electron’s rest frame, the nucleus appears to move with velocity −v⃗, creating a
magnetic field. Using the Biot-Savart law with current element Id⃗l = Zev⃗:

B⃗ =
µ0

4π

Zev⃗ × r⃗

r3

Converting to the electric field E⃗ = Zer⃗
4πϵ0r3

and using c2 = 1/(µ0ϵ0):

B⃗ = − 1

c2
v⃗ × E⃗ = − Ze

mc2r3
(p⃗× r⃗)

where we used p⃗ = mv⃗ and L⃗ = r⃗ × p⃗ = −p⃗× r⃗.
The SOC Hamiltonian arises from the interaction between the electron’s magnetic moment

and this field:

H = −µ⃗ · B⃗ =
g

2
µBσ⃗ · B⃗ (5.13)

where µB = eℏ/(2m) is the Bohr magneton and g ≈ 2 for the electron. This gives:

ĤSOC =
Ze2

2m2c2r3
L⃗ · S⃗ (5.14)

Note the factor of 1/2 from the Thomas precession correction. Since [L⃗, S⃗] ̸= 0, neither L
nor S are conserved. The good quantum numbers become (L2, S2, J2, Jz) where J⃗ = L⃗ + S⃗ is
the total angular momentum.

38



Rashba Spin-Orbit Coupling

In two-dimensional systems with structural inversion asymmetry (SIA), such as semiconductor
heterostructures or surfaces, the Rashba SOC emerges. The asymmetric confining potential
creates an effective electric field E⃗ = E0ẑ perpendicular to the 2D plane.

Following from the relativistic transformation [2]:

ĤR = α(ẑ × k⃗) · σ⃗ (5.15)

where the Rashba parameter α quantifies the SOC strength and depends on the electric field
and material properties. The full 2D Hamiltonian becomes:

H =
ℏ2k2

2m
+ α(σxky − σykx)

The energy dispersion exhibits spin-momentum locking:

E±(k⃗) =
ℏ2k2

2m
± α|⃗k| (5.16)

with helical eigenstates:

Ψ
k⃗,±(r⃗) = eik⃗·r⃗

1√
2

(
1

±eiϕk

)
where ϕk = tan−1(ky/kx) and the spin is locked perpendicular to momentum.

ky

E

Free e−

ky

E

Zeeman splitting

ky

E

Rashba SOC

Dresselhaus Spin-Orbit Coupling

In crystals lacking bulk inversion symmetry (BIA), such as zinc-blende semiconductors, the
Dresselhaus SOC emerges:

ĤD = β
(
σxkx(k

2
y − k2z) + σyky(k

2
z − k2x) + σzkz(k

2
x − k2y)

)
(5.17)

In quantum wells, this reduces to linear terms similar to Rashba but with different spin
texture. The interplay between Rashba and Dresselhaus terms can be tuned to create persistent
spin helix states important for spintronic applications.

5.2.2 Spin Current

Unlike charge current which describes the flow of electric charge, spin current represents the
flow of spin angular momentum. In systems with SOC, spin is not conserved, leading to rich
physics including spin relaxation and spin-charge interconversion.

The spin current density tensor describes the flow of spin component α in direction β:

Jαβ
s =

ℏ
4
⟨{σα, vβ}⟩ (5.18)
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where {A,B} = AB + BA is the anticommutator ensuring Hermiticity. For a quasi-1D
system, the net spin current simplifies to:

Js =
ℏ
2
(I↑ − I↓)

representing the difference between spin-up and spin-down currents.
In systems with Rashba SOC, the velocity operator acquires a spin-dependent term:

vi =
pi
m

+
α

ℏ
(ẑ × σ⃗)i

This spin-velocity coupling enables the conversion between charge and spin currents, funda-
mental to both SHE and spin-transfer torque phenomena.

5.2.3 Linear Response Theory and Kubo Formula

To understand the microscopic origin of Hall effects, we employ linear response theory. Con-
sider a system described by an unperturbed Hamiltonian H0 subjected to an electromagnetic
perturbation.

For electrons in an electromagnetic field:

H =
(p⃗− qA⃗)

2

2m
(5.19)

=
p⃗2

2m︸︷︷︸
unperturbed term (H0)

− q

2m
(p⃗ · A⃗+ A⃗ · p⃗)︸ ︷︷ ︸

paramagnetic term (Hp)

+
q2A⃗2

2m︸ ︷︷ ︸
diamagnetic term (Hd)

(5.20)

The diamagnetic term Hd preserves time-reversal symmetry and doesn’t contribute to Hall
conductivity [2]. The paramagnetic perturbation becomes:

∆H = Hp = −J⃗ · A⃗ (5.21)

where J⃗ = −ep⃗/m is the current density operator.
For an AC electric field E⃗ = E⃗0e

−iωt with E⃗ = −∂A⃗/∂t:

A⃗ =
iE⃗0

ω
e−iωt (5.22)

Using time-dependent perturbation theory in the interaction picture, the linear response of
the current to the electric field gives the conductivity tensor. After considerable algebra [19],
the Kubo formula for Hall conductivity emerges:

σxy(ω) =
1

ℏω

∫ ∞

0
dt eiωt⟨0|[Jy(0), Jx(t)]|0⟩

In the DC limit (ω → 0), this becomes:

σxy =
iℏ
V

∑
n̸=0

⟨0|Jy|n⟩⟨n|Jx|0⟩ − ⟨0|Jx|n⟩⟨n|Jy|0⟩
(En − E0)

2 (5.23)

where V is the system volume and the sum runs over all excited states.
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5.2.4 Topological Aspects: TKNN Formula and Chern Number

In periodic systems, the Hall conductivity can be expressed in terms of topological invariants.
The Chern number, a topological invariant characterizing the global properties of Bloch bands,
is defined as:

Cn =
1

2π

∫
BZ

d2kΩn(k⃗) (5.24)

where Ωn(k⃗) is the Berry curvature of band n, computed from Bloch states as described in:

bn(k) = i⟨∇kun,k | × |∇kun,k⟩.

Using the gauge-invariant formulation with phase θn(k) from:

Ψn,k(r) ≡ exp(iθn(k))Ψn,k(r),

the Chern number becomes an integral over the Brillouin zone boundary [14].
Note here that, Bloch’s theorem says electrons in a crystal have wavefunctions Ψn,k(r) =

eik·run,k(r). The index n labels the band, k is the crystal momentum, and r is position. The
cell-periodic part un,k(r) changes smoothly with k. The Berry curvature bn(k) measures how
un,k twists in momentum space and acts like a magnetic field in k–space. The gradient ∇k

means derivative with respect to k. The phase factor eiθn(k) shows the gauge freedom: we can
multiply a Bloch state by a k–dependent phase without changing any physical result.

The celebrated TKNN formula relates the Hall conductivity to the sum of Chern numbers
over occupied bands:

σxy =
e2

h

∑
occupied n

Cn

This quantization is robust against disorder and represents a topological protection of the
Hall conductance. Materials with non-zero Chern numbers in their occupied bands are termed
Chern insulators.

5.2.5 Spin Hall Effect

The spin Hall effect generates a transverse pure spin current from an unpolarized charge current
in nonmagnetic materials through SOC. Unlike the AHE, the SHE produces spin accumulation
at sample edges without net charge separation.

Phenomenology and Spin Hall Angle

The efficiency of spin-charge conversion is characterized by the spin Hall angle:

Jz,y
s =

ℏ
2e

θSHJx
c (5.25)

where Jz,y
s denotes z-polarized spins flowing in the y-direction for charge current along x.

Typical values range from θSH ∼ 0.001 in semiconductors to ∼ 0.3 in heavy metals like tungsten.

Microscopic Mechanisms

The SHE arises through both intrinsic and extrinsic mechanisms:
Intrinsic mechanism: Originates from the Berry curvature of SOC-modified band struc-

ture. Using the Kubo formula for spin conductivity:
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σxy
SH =

e

2π

∫
BZ

d2k f(k⃗)Ωs(k⃗) (5.26)

where Ωs(k⃗) is the spin Berry curvature. For 2D Rashba systems, this yields a universal
value:

σxy
SH =

e

8π
sgn(α) (5.27)

independent of the Rashba parameter magnitude and disorder.
Extrinsic mechanisms: Include skew scattering (asymmetric scattering from SOC) and

side-jump (coordinate shift during scattering). These dominate in metals with moderate SOC.
The spin Hall angle in Rashba systems scales as:

θSH ∼ αkF
EF

(5.28)

For Dresselhaus SOC, the spin conductivity tensor has different symmetry:

σij
SH ∝ βϵijkkk (5.29)

Inverse Spin Hall Effect

The reciprocal process converts spin current to charge current:

J⃗c =
2e

ℏ
θSH(J⃗s × ŝ) (5.30)

This enables electrical detection of spin currents, crucial for experimental verification and
device applications.

5.2.6 Anomalous Hall Effect

The anomalous Hall effect occurs in ferromagnetic materials, generating a transverse voltage
proportional to magnetization without external magnetic field. It shares the same SOC origin
as SHE but involves spin-polarized carriers.

Hall Conductivity and Mechanisms

The anomalous Hall current follows:

J⃗c = σAHE
xy (M̂ × E⃗) (5.31)

where M̂ is the magnetization direction. The anomalous Hall angle quantifies the effect:

θAHE =
σAHE
xy

σxx
(5.32)

Three mechanisms contribute to AHE, as illustrated in Figure 5.6:
Intrinsic contribution: Arises from Berry curvature of exchange-split bands:

σint
xy = −e2

ℏ

∫
BZ

d3k

(2π)3
f(k⃗)Ωz

n(k⃗) (5.33)

The Berry curvature for magnetic systems:
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Figure 5.6: Illustration of the three main mechanisms that can give rise to an AHE. All mech-
anisms affect electrons in any real material (source: [9]).

Ωz
n(k⃗) = −2Im

∑
m ̸=n

⟨n|v̂x|m⟩⟨m|v̂y|n⟩
(En − Em)2

(5.34)

Extrinsic contributions: Skew scattering and side-jump, similar to SHE but for spin-
polarized carriers.

Material Dependence

In magnetic systems with Rashba SOC:

Ĥ =
p⃗2

2m
+ α(ẑ × k⃗) · σ⃗ + JexM⃗ · σ⃗ (5.35)

The AHE conductivity scales as:

σAHE
xy ∝ αJexM

(EF − Eex)
2 (5.36)

demonstrating the interplay between SOC strength α and exchange splitting Eex.
Typical materials exhibit: Fe (θAHE ∼ 1%), Co-based Heuslers (∼ 10%), and magnetic Weyl

semimetals (> 20%). The enhancement in topological materials arises from Berry curvature
singularities near Weyl points, representing the extreme limit of intrinsic AHE physics.

5.3 Spin Pumping

Spin pumping is the phenomenon where, precessing magnetization in FM layer causes spin
current to flow into adjacent NM layer. As a result of this momentum transfer into the NM
layer, magnetization precession is damped in the FM, resulting in larger αeff . The spins are
actually generated at the interface itself and then decay according to the spin diffusion length
of the NM layer, λN . A schematic of the same along with explanation can be seen in Figure 5.7.
Caption of the same discusses, how we can detect spin current using the ISHE, which generates
an electrical signal from this spin current with AC component along the y direction and DC
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along the x direction, i.e. the cross product direction as per (5.30). Note that this process
requires:

• A strong microwave or radiofrequency drive to sustain steady precession.

• A clean FM/NM interface where electrons can exchange spin angular momentum.

• An external magnetic field to tilt and hold the magnetization at a constant cone angle θ.

Figure 5.7: A spin current is induced at the ferromagnet-nonmagnet (FM-NM) interface through
spin pumping (shown by grey arrows). The spin polarization of this current varies with time and
predominantly precesses within the y-z plane (represented by the purple arrow). A small, time-
averaged direct current (DC) component emerges along the x-axis (yellow arrow). Owing to
the inverse spin Hall effect, both the oscillating and static spin components generate transverse
charge currents in the NM layer. These can be detected as alternating current (AC) and DC
voltages by placing electrical contacts along the y and x directions, respectively (source: [21]).

5.3.1 Added Damping in LLG for Spin Pumping

As already discussed, we see that the FM layer transfers momentum to NM layer resulting in a
larger damping αeff . Also note, that depending on the properties of the adjacent material (e.g.,
its ability to absorb or reflect the spin current), can lead to a shift in the observed resonant
frequency or field. This is as if the LLG equation has been modified to:

dm⃗

dt
= −γeffm⃗× H⃗eff + αeffm⃗× dm⃗

dt
(5.37)

where, we find that for effective spin mixing conductance, g↑↓eff = g↑↓r,eff + ig↑↓i,eff (effective,
to account for spin backflow into the FM layer due to the finite NM layer, reducing the spin
pumping), we can write these new effective damping and gamma terms as:

γ

γeff
= 1− ℏγ

(4πMs)tmag
g↑↓i,eff ; αeff = α+

ℏγ
(4πMs)tmag

g↑↓r,eff (5.38)

Basically, this results in a shifted FMR peak, along with increased FWHM. Since we already
know from (1.23), that α ∝ ∆H (FWHM), it is easy to see that:

g↑↓r,eff =
(4πMs)2γtNM

gµBω
(∆HFM + NM −∆HFM) (5.39)

i.e. we can find the spin mixing conductance by comparing the output experimentally, from
the modified spin pumping case’s FMR’s difference from the original FMR.

44



5.3.2 Spin Current Equation

The fundamental expression for the instantaneous spin current pumped across the FM/NM
interface is given by:

J⃗s =
ℏ
4π

g↑↓r,effm⃗× dm⃗

dt
+

ℏ
4π

g↑↓i,eff
dm⃗

dt
(5.40)

This equation tells us that the spin current has two components:

• The first term m⃗× dm⃗
dt represents the reactive (out-of-phase) component, proportional to

the real part of the mixing conductance g↑↓r,eff . This term is always perpendicular to both
the magnetization and its time derivative.

• The second term dm⃗
dt represents the dissipative (in-phase) component, proportional to the

imaginary part g↑↓i,eff .

Spherical Coordinate Transformation

To understand the temporal behavior of spin pumping, we need to express the magnetization
in spherical coordinates. For a magnetization precessing around the z-axis with cone angle θ
and azimuthal angle ϕ(t):

m⃗ = sin θ cosϕêx + sin θ sinϕêy + cos θêz (5.41)

The time derivative becomes:

dm⃗

dt
= sin θ

dϕ

dt
(− sinϕêx + cosϕêy) = sin θ

dϕ

dt
êϕ (5.42)

where êϕ = − sinϕêx + cosϕêy is the azimuthal unit vector.
For the cross product term:

m⃗× dm⃗

dt
= (sin θ cosϕêx + sin θ sinϕêy + cos θêz)× sin θ

dϕ

dt
êϕ

Since êx × êϕ = cosϕêz, êy × êϕ = sinϕêz, and êz × êϕ = −êr, we get:

m⃗× dm⃗

dt
= sin θ

dϕ

dt
êr × sin θ

dϕ

dt
êϕ = sin2 θ

(
dϕ

dt

)
êr

Substituting back into the spin current equation:

J⃗s =
ℏ
4π

g↑↓r,eff sin θ
dϕ

dt
êr +

ℏ
4π

g↑↓i,eff sin θ
dϕ

dt
êϕ (5.43)

Time-Averaged DC Spin Current

For steady precession at frequency ω = dϕ/dt, the time-averaged spin current in the radial
direction (which survives the time averaging) is:

⟨Js,z⟩ =
ℏ
4π

g↑↓r,eff sin θω cos θ =
ℏω
4π

g↑↓r,eff
sin 2θ

2

Converting to charge current density (multiplying by 2e/ℏ):

Js,dc =
2e

ℏ
⟨Js,z⟩ =

2e

4π
g↑↓r,effω

sin 2θ

2

The DC spin pumping voltage across the NM layer is:

V dc
SP =

ℏω
2e

sin 2θ

2
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And the total DC spin pumping current through a strip of width w and length l:

IdcSP = Geff
SP V dc

SP

where the effective spin pumping conductance is:

Geff
SP = lw

2e2

h
g↑↓r,eff

Combining these:

IdcSP = Geff
SP

ℏω
2e

sin 2θ

2
=

S̃ℏω
2e

Geff
SP sin2 θ (5.44)

5.3.3 Elliptical Precession Correction

In real thin film systems, magnetization precession is not perfectly circular due to strong de-
magnetization fields. This ellipticity must be accounted for through a correction factor S̃.
For elliptical precession, the relationship between the measured DC spin current and the ideal
circular case is:

Jelliptical
s,dc = S̃Jcirc

s,dc

The ellipticity correction factor is given by:

S̃ =
2ω(4πMsγ) + (4πMs)

2γ2 + 4ω2

(4πMs)
2γ2 + 4ω2

(5.45)

This factor accounts for the fact that the in-plane and out-of-plane precession amplitudes are
different due to demagnetization effects, leading to an elliptical rather than circular trajectory.

The final expression for the DC spin pumping voltage including ellipticity correction be-
comes:

V dc
SP = S̃

ℏω
2e

sin2 θ (5.46)

5.4 Spin Transfer Torque and Magnetization Switching

Spin Transfer Torque (STT) is an opposite effect to spin pumping, where, from spin-polarized
current, the magnetization of an FM experiences a torque due to the change in spin-angular
momentum carried by the electrons. It was predicted in 1996 by Slonczewski and Berger,
independently. This mechanism enables electrical control of magnetic states in nanoscale de-
vices, forming the basis for applications such as magnetic random access memory (MRAM).
The fundamental principle of spin transfer torque arises from the conservation of angular mo-
mentum. When a spin-polarized current passes through a magnetic material, the spin angular
momentum is transferred from the conducting electrons to the local magnetization. Let the
spin-polarization η of an electric current be:

η =
I↑ − I↓
I↑ + I↓

(5.47)

with I↑ being current carried by spin-up electrons. Note that 1 > η > −1. Also Let’s define
spin current magnitude be:

s⃗ =
ℏ
2e

I. (5.48)

where the factor ℏ
2e converts electrical current to spin angular momentum current. The the Spin

transfer torque (STT) exerted by spin on the magnetization of FM is:

τ⃗STT = s⃗× (η̂ × M̂) sin θ (5.49)
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where, η̂ and M̂ are unit vectors along spin-polarization and magnetization, respectively, and
θ is the angle between them. sin θ ensures maximum torque when spins are perpendicular to
magnetization. The double cross product (n̂s × n̂m) gives the direction perpendicular to both
spin and magnetization, and the final cross product with s⃗ (spin current) produces the torque
direction. Hence we may modify LLG to account for STT as:

dm⃗

dt
− αm⃗× dm⃗

dt
= − γ

M
M⃗ × H⃗eff = − γ

M
τ⃗STT (5.50)

The STT term τ⃗STT appears on the right side as an additional torque.

5.4.1 Shape Anisotropy in STT Devices

Shape anisotropy, arising from magnetostatic self-energy, dominates the energy landscape in
nanoscale STT devices and directly controls the critical switching current. The shape anisotropy
energy is:

Eshape(θ, ϕ) =
1

2
µ0M

2
sΩNd(θ, ϕ) (5.51)

where the orientation-dependent demagnetization factor is:

Nd(θ, ϕ) = Nd−xx sin
2 θ cos2 ϕ+Nd−yy sin

2 θ sin2 ϕ+Nd−zz cos
2 θ (5.52)

with the constraint Nd−xx +Nd−yy +Nd−zz = 1.
The key anisotropy fields governing STT switching are:

Hk = (Nd−yy −Nd−zz)Ms, Hd = (Nd−xx −Nd−yy)Ms (5.53)

where Hk controls out-of-plane preference and Hd controls in-plane preference. For circular
cross-sections (Nd−xx = Nd−yy), the energy simplifies to:

Eshape(θ) =
1

2
µ0MsHkΩsin2 θ (5.54)

eliminating in-plane anisotropy (Hd = 0).
The critical switching current scales with effective anisotropy:

Ic =
2eMstα

ℏP
Heff (5.55)

where t is free layer thickness, α is Gilbert damping, P is spin polarization efficiency, and
Heff includes all anisotropy contributions. This direct relationship makes geometric shape
engineering essential for STT optimization.

5.4.2 Spherical Coordinate Framework for Magnetization Switching

Since magnetization magnitude is conserved (|M⃗ | = Ms), STT switching dynamics occur on the
unit sphere surface, making spherical coordinates optimal for analysis. The unit magnetization
vector is:

m⃗ = sin θ cosϕêx + sin θ sinϕêy + cos θêz (5.56)

where θ ∈ [0, π] is the polar angle from +z axis and ϕ ∈ [0, 2π] is the azimuthal angle. The time
derivative becomes:

dm⃗

dt
=

dθ

dt
êθ + sin θ

dϕ

dt
êϕ (5.57)

with the sin θ factor ensuring proper spherical geometry normalization.
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The Gilbert damping term transforms to:

αm⃗× dm⃗

dt
= α

dθ

dt
êϕ − α sin θ

dϕ

dt
êθ (5.58)

always opposing magnetization motion and causing energy dissipation.
For STT calculations with spin polarization n⃗s = sin ξêy + cos ξêz, the torque components

are:
τSTT,θ = −s sin θ cosϕ[sin θ sinϕ sin ξ + cos θ cos ξ] (5.59)

τSTT,ϕ = s[cos θ(cos θ sin ξ − sin θ sinϕ cos ξ) + sin2 θ cos2 ϕ sin ξ] (5.60)

where s is the spin current magnitude. The complete LLG system becomes:

dθ

dt
+ α sin θ

dϕ

dt
= − γ

M
τθ (5.61)

sin θ
dϕ

dt
− α

dθ

dt
= − γ

M
τϕ (5.62)

Figure 5.8: Example of STT device: 3 Terminal MTJ (Magnetic Tunnel junction), integrated
with a SOT geometry. The MTJ stack consists of a MgO barrier between two CoFeB layers:
the reference layer (pinned by Ta/Ru) and the free layer whose magnetization can be switched.
A current perpendicular to the plane (CPP) flows through the MTJ to read its state via TMR,
i.e. low resistance when magnetizations are parallel, high when antiparallel. For switching, an
in-plane current is applied through the underlying Ta strip, which generates a transverse spin
current via the SHE. This spin current exerts a torque on the free layer, enabling magnetization
reversal between parallel and antiparallel states. Thus, the in-plane current enables SOT-driven
switching, while the perpendicular current provides resistive readout, with the lock-in detection
circuit enhancing signal sensitivity. (Source: [8])

Spin Orbit Torque (SOT)

Spin–orbit torque (SOT) is When an in-plane charge current flows in a heavy metal (like Ta,
Pt, or W), strong spin-orbit coupling (e.g., via the spin Hall effect) generates a transverse spin
current. These spins accumulate at the interface with an adjacent ferromagnet and exert a
torque on its magnetization, enabling switching. Importantly, the write current flows in-plane,
separate from the MTJ stack.
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Difference from spin-transfer torque (STT): In STT, the write current flows perpendicularly
through the MTJ, and spin-polarized electrons directly transfer angular momentum to the
free layer. In SOT, the spin current is generated in the heavy metal and injected laterally,
giving faster, more reliable switching with separate read/write paths. See Figure 5.8, for better
understanding.

5.5 Fitting Parameters for ST-FMR

5.5.1 Basic Understanding of ST-FMR

Spin-Torque Ferromagnetic Resonance (ST-FMR) is an experimental technique that exploits
the interplay between spin currents and magnetization dynamics to recreate FMR-like output.
The core principle involves using an RF current to simultaneously:

1. Drive magnetic oscillations: RF current generates spin torques (τDL, τFL) and Oersted
fields that excite magnetization precession

2. Detect magnetic response: Through anisotropic magnetoresistance (AMR), oscillating
magnetization modulates device resistance, producing a measurable DC voltage when
mixed with the driving RF current

The technique’s power lies in separating different spin torque contributions through their
distinct lineshape signatures: symmetric Lorentzians arise from field-like torques, while anti-
symmetric Lorentzians arise from damping-like torques. This allowd us to extract spin Hall
angles and spin torque efficiencies as well, on top of finding the H0 and α, as we did in FMR.

Figure 5.9: (a) The Pt/Py thin film shows three torques: spin-transfer torque (STT), Oersted
field torque, and damping torque. The spin Hall effect in Pt generates a spin current into Py,
affecting its magnetization. (b) Side view illustrates the Oersted field from current in Py, which
doesn’t alter Py’s anisotropic magnetoresistance. (c) A circuit schematic outlines the setup for
spin-torque ferromagnetic resonance (ST-FMR) measurements (source: [7]).

5.5.2 Modified LLG Equation (LLGS Equation)

The magnetization dynamics in ST-FMR are governed by the modified LLG equation:

dm̂

dt
= −γ(m̂× H⃗eff ) + αm̂× dm̂

dt
+ τ⃗DL + τ⃗FL − γm̂× H⃗rf

Where, the first two terms are from LLG itself,

τ⃗DL = γ
ℏ

2eµ0MstF
ξDLJC,rf (m̂× σ̂ × m̂)
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x (in-plane)
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z (out-of-plane)
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τDL

H⃗eff
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Figure 5.10: Direction of Field-Like and Damping like torques for LLGS (Inspiration: [18]).

is the damping like torque that acts in-plane (see Figure 5.10). It is capable of flipping the FM’s
magnetization, and hence is of great interest. The other term,

τ⃗FL = −γ
ℏ

2eµ0MstF
ξFLJC,rf (σ̂ × m̂)

is the field like torque that acts out of plane, like the applied field does and the last term
−γm̂× H⃗rf is thet Oersted field torque from RF current itself (see Figure 5.9).

5.5.3 Complete Derivation of the Fitting Equation

Step 1: Small-angle approximation and coordinate system

Assuming magnetization primarily along ŷ (see Figure 5.10) with small deviations: m⃗ = mxx̂+
(1)ŷ +mz ẑ where mx,mz ≪ 1. Hence we can expand the LLGS by components with my ≈ 1

and
dmy

dt ≈ 0 as:

dmx

dt
= γMeffmz + γmzHext + α

dmz

dt
+ τx

dmz

dt
= −γmxHext − α

dmx

dt
+ τz

where τx = |τ⃗DL| cosϕ (in-plane) and τz = |τ⃗FL − γm̂ × H⃗rf | cosϕ (out-of-plane) and ϕ is
the angle that the in-plane magnetization is making with the spin current. Just imagine of it as
the other spin incoming and it’s orientation causing torque on our magnetization vector, then
we are looking at it’s components.

Step 2: Second-order differential equation

Taking second derivatives of these two equations, we find:

dm2
x

dt2
= γMeff

dmz

dt
+ γHext

dmz

dt
+ α

d2mz

dt2
+

dτz
dt

d2mz

dt2
= −γHext

dmz

dt
− α

d2mx

dt2
+

dτz
dt

now replace the d2mz
dt2

and dmz
dt terms in dm2

x
dt2

to get:
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(1 + α2)
d2mx

dt2
+ γα (Meff + 2Hext)

dmx

dt
+ γ2Hext (Meff +Hext)mx

− γ (Meff +Hext) τz − α
dτz
dt

− dτx
dt

= 0 (5.63)

then neglect α2 and αdτz
dt terms since damping and change in field like torque are negligible,

just to get:

d2mx

dt2
+ γα(Meff + 2Hext)

dmx

dt
+ γ2Hext(Meff +Hext)mx = γ(Meff +Hext)τz +

dτx
dt

Step 3: Harmonic solution

For RF driving at frequency ω: mx = m0
xe

iωt, τx = τ0xe
iωt, τz = τ0z e

iωt.
Putting the same in the last equation would give us:

− ω2my + iωγ (Meff + 2Hext)my + γ2Hext (Meff +Hext)my

− γ (Meff +Hext)Tz = iωρs = 0 (5.64)

So just solve it for m0
x to get:

m0
x =

1

ω2 − ω2
0 − i2ω∆ω

(
ωzτ

0
z + iωτ0x

)
where ω0 = γ

√
Hext(Meff +Hext), ωz = γ(Meff +Hext), and ∆ω = 1

2αγ(Meff + 2Hext).

Step 4: Near-resonance approximation

Using ω ≈ ω0 near resonance:

m0
x =

1

2

1

ω − ω0 − i∆ω

(ωz

ω
τ0z + iτ0x

)
If we then extract the real part of m0

x we get the in-phase component of the phase since
the imaginary part contains phase lag due to damping/torques. So basically in-phase piece
means the part of that oscillation that is synchronous with the driving current I(t). We take
the real part (the in-phase component) because it is the only part that produces a measurable,
non-zero DC voltage when mixed with the RF current. The imaginary part (the out-of-phase,
or quadrature, component) averages to zero over time and is therefore undetectable in our DC
measurement. ℑ(mx0) = m′′ represents the component that is 90o out-of-phase (in quadrature)
with the driving torque. It responds as ℑ(mx0) sin(ωt). Hence:

Re[m0
x] =

1

2

ω − ω0

(ω − ω0)
2 +∆ω2

ωz

ω
τ0z − 1

2

∆ω

(ω − ω0)
2 +∆ω2

τ0x (5.65)

We will explain why we did so, and use this result, just in a moment.

Step 5: Mixing voltage

The device resistance in our case depends on the angle between current and magnetization
due to anisotropic magnetoresistance (AMR). When an rf current Irf drives the device, the
magnetization precesses at the same frequency, causing the resistance to oscillate as R(t) =
R0 +∆R cos(ωt+ϕ). The product of the oscillating current and resistance produces a rectified
dc component, called the mixing voltage. Lets say, the rf current and resistance be
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I(t) = Irf cos(ωt), R(t) = R0 +∆R cos(ωt+ ϕ).

The instantaneous voltage is

V (t) = I(t)R(t) = IrfR0 cos(ωt) + Irf∆R cos(ωt) cos(ωt+ ϕ).

Using

cosA cosB = 1
2

[
cos(A−B) + cos(A+B)

]
,

we obtain

V (t) = IrfR0 cos(ωt) +
1
2Irf∆R cosϕ+ 1

2Irf∆R cos(2ωt+ ϕ).

Taking the time average (DC component) removes all oscillatory terms:

⟨V (t)⟩ = 1
2Irf∆R cosϕ.

Since cosϕ is the in-phase (real) component of ∆R, we write

Vmix = 1
2IrfRe(∆R). (5.66)

which is the experimentally measurable signal in ST-FMR. Imagine a resistance component
driven by the quadrature (imaginary) response:

δRimag(t) ∝ cos(ωt); [∵ sin(ωt+ 90o) = cos(ωt)].

Now mix it with the current I(t) = Irf sin(ωt):

Vmix, imag = ⟨Irf sin(ωt) · const · cos(ωt)⟩t = const · Irf⟨sin(ωt) cos(ωt)⟩t

The time-average of sin(ωt) cos(ωt) is zero. Therefore: Vmix, imag = 0. Hence, we can ignore the
imaginary component, as it produces no net DC voltage over one full cycle.

Also note that,

δR =
dR

dϕ
δϕ ≈ −dR

dϕ
Re[m0

x] sin(ωt),

since in small-angle precession, the in-plane angle change δϕ (the rotation of magnetization in
the film plane) is directly proportional to the x-component of the magnetization mx.

This gives the mixing voltage from (5.66) and (5.65) in field-sweep form:

Vmix = −1

4
Irf

dR

dϕ

1

∆H

(
dω

dH

)−1

H=H0

[
FA(H)τ0z

√
Meff

H0
+ 1− FS(H)τ0x

]
(5.67)

where FS(H) = ∆H2

(H−H0)
2+∆H2

and FA(H) = (H−H0)∆H

(H−H0)
2+∆H2

are symmetric and antisymmetric

Lorentzians. ∆H = ωγ/α, is the convention to say ∆H as HWHM unlike how we have declared
it as FWHM so far.
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Step 6: Final parametrization in Standard Terminology

Defining:

S =
1

γ
τDL =

ℏ
2eµ0MstF

ξDLJC,rf = HDL

A
1√

Meff/H0 + 1
=

ℏ
2eµ0MstF

ξFLJC,rf +
tNJC,rf

2
= HFL +Hrf

The mixing voltage becomes:

Vmix = −1

2
γIrfRAMR sinϕ cos2 ϕ

1

∆H

(
dω

dH

)−1

H=H0

(SFS(H) +AFA(H)) (5.68)

using, dR
dϕ = −2 sin(ϕ) cos(ϕ)RAMR, with RAMR = (R∥ − R⊥), which we can get by differenti-

ating (5.2).

Step 7: Spin-to-charge current ratio

In the absence of field-like torque beyond Oersted field, we can define the efficiency of FMR as:

ξFMR ≡
JS,rf
JC,rf

=
S

A

eµ0MstF tN
√

Meff/H0 + 1

ℏ
(5.69)

This fundamental equation from [7] provides the baseline ST-FMR fitting function (modified
to more parameters, than discussed in paper, as per [18]), relating the measurable symmetric-
to-antisymmetric ratio to the spin torque efficiency. It assumes no additional effects like spin
pumping, which would require further modifications to account for dynamic spin current back-
flow from ferromagnet to normal metal.

Note: We have ignore field like torque in our calculation, however, Adding a thin 0.3 nm
Hf spacer layer at the Pt/FeCoB interface, however, has been shown to suppress the field-like
torque and hence, very benificial for our measurements [11] [18].

5.6 Practical Fitting and Extraction of Parameters from ST-
FMR Measurements

Lets lay out the basic equation for the standard ST-FMR analysis, the mixing voltage, which
has the form as in (5.68).

Vmix = −1

2
γIrfRAMR sinϕ cos2 ϕ

1

∆H

(
dω

dH

)−1

H=H0

(SFS(H) +AFA(H))

Where:

• FS(H) = ∆H2

(H−H0)
2+∆H2

is the symmetric Lorentzian

• FA(H) = (H−H0)∆H

(H−H0)
2+∆H2

is the antisymmetric Lorentzian
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Parameter Extraction Process:

1. Linewidth and Damping (α):

• From the HWHM of the resonance: ∆H = αω
γ

• Measure linewidth vs. frequency to extract damping: ∆H = ∆H0 +
2παf
γ

• The slope gives α, intercept gives inhomogeneous broadening ∆H0

2. Resonance Field and Effective Magnetization:

• At resonance: ω0 = γ
√

H0(Meff +H0)

• Plot (f/γ)2 vs H0 → slope and intercept give Meff

3. Spin Torque Efficiencies:

• The symmetric amplitude S relates to damping-like torque:

S =
ℏ

2eµ0MstF
ξDLJC,rf (5.70)

• The antisymmetric amplitude A relates to field-like torque + Oersted field:

A
1√

Meff/H0 + 1
=

ℏ
2eµ0MstF

ξFLJC,rf +
tNJC,rf

2
(5.71)

4. Fitting Procedure:

• Fit the voltage spectrum to: V = VSFS(H) + VAFA(H)

• Extract VS and VA amplitudes

• Calculate the ratio: S
A = VS

VA

√
1 +Meff/H0

• This gives the ST-FMR efficiency:

ξFMR =
S

A

eµ0MstF tN
√
Meff/H0 + 1

ℏ
(5.72)

5. Thickness Dependence Analysis:

• Without field-like torque: ξFMR = ξDL

• With field-like torque: 1
ξFMR

= 1
ξDL

+ ℏ
eµ0MstF tN

ξFL
ξDL

• Plot 1/ξFMR vs 1/(tF tN ) → intercept gives 1/ξDL, slope gives ξFL/ξDL

5.7 Factoring for Spin Pumping Correction

Spin pumping creates an additional DC voltage that was being ignored. During FMR,
the precessing magnetization pumps a pure spin current into the adjacent normal metal, which
gets converted back to a charge current via the inverse spin Hall effect (ISHE), as discussed in
section 5.3. This creates a voltage that opposes the ST-FMR signal.

• ST-FMR signal: RF current → spin current (via SHE) → torque on FM → resistance
oscillation → DC voltage

• Spin pumping signal: Magnetization precession → spin current pumped into NM →
charge current (via ISHE) → DC voltage

The spin pumping voltage has opposite sign to the ST-FMR symmetric component, caus-
ing systematic underestimation of torques.

Ryan Christopher Tapping’s Thesis [18] is mainly focused on testing out this impact
of Spin pumping on ST-FMR, and incorporating for these extra factors introduced. We will
directly discuss these results briefly here.
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Spin Pumping Voltage Derivation

The spin pumping voltage contributes only a symmetric component:

VSP =
1

4
Ry′ sinϕ cos2 ϕ

1

∆H

(
∂ω

∂H

)−1

H=H0

θSH
e

2π
wλNg↑↓e FS(H)×

1

∆ω

[
ωz(τFL + τOe)

2 + ωxτ
2
DL

]
tanh

(
tN
2λN

)
(5.73)

Where:

• g↑↓e = effective spin mixing conductance

• λN = spin diffusion length in NM

• θSH = spin Hall angle

Modified Total Voltage

The total measured voltage becomes:

Vtotal = Vmix + VSP = −1

2
γIrfRAMR sinϕ cos2 ϕ

1

∆H

(
dω

dH

)−1

H=H0

(S′FS(H) +AFA(H)) (5.74)

Where the modified symmetric amplitude is:

S′ = S − ξSPDLΓ

[(
1 +

ℏ
eµ0MstF tN

ξFL

)
A+

(
ℏ

eµ0MstF tN
ξDL

)
H0√

H0(Meff +H0)
S

]
(5.75)

The Correction Factor Γ

Γ = exp

(
−
tHf

λHf

)
σF tF

σN tN + σF tF

Ry′

RAMR

h

e

γ

8πρN

1

α

√
H0(Meff +H0)

Meff + 2H0
tanh

(
tN
2λN

)
(5.76)

This factor encapsulates:

• Current shunting between layers

• Spin diffusion and relaxation

• Interface transparency effects

Modified Efficiency with Spin Pumping

The measured ST-FMR efficiency becomes:

ξFMR = ξDL

(
1

1 + C2
tF tN

ξFL

)
×(

1−
ξSPDL

ξDL
Γ
(
C1tF tN + 2C1C2ξFL + C1C

2
2 tF tNξ2FL + ξ2DLC1tF tN

))
(5.77)

Where:

• C1 =
eµ0Ms

√
Meff/H0+1

ℏ

• C2 =
ℏ

eµ0Ms
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5.8 Setup and Lithography

Physical Device Fabrication

ST-FMR devices are made on wafers with a pre-sputtered Pt/Py bilayer. The film thickness
can vary by about 10–15% from the center to the edges, which is important for accurate spin
torque measurements. The devices are patterned using two lithography steps with a positive
photoresist, which is spin-coated and exposed by photolithography to define the active regions.

Figure 5.11: Block diagram for the ST-FMR experimental setup showing the complete mea-
surement chain. Sample is deposited on Pt/Py bilayer. The device under test is positioned at
45o to the applied magnetic field H, with RF drive current supplied through a bias tee that
simultaneously enables DC voltage detection. A microwave signal generator provides both the
RF excitation and low-frequency modulation reference for lock-in detection, while a Hall probe
monitors the field strength during magnetic field sweeps. The lock-in amplifier extracts the
weak ST-FMR mixing voltage from noise, with all components coordinated through computer
control for automated data acquisition.

After developing the photoresist, ion beam etching transfers the pattern into the magnetic
stack. Accelerated ions remove material by sputtering, producing sharp device edges. The
process slightly over-etches to avoid electrical shorts, with the insulation layer protecting the
stack. The photoresist is then removed by solvent cleaning and ultrasonic treatment [18].

The second lithography step defines contact pads, aligned with the etched features. After
resist patterning and cleaning, contact pads (usually Ti/Pt) are added by physical vapor deposi-
tion to provide low-resistance microwave contacts. Finally, extended solvent treatment removes
the unwanted metal layers.
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Device Architecture and Measurement Configuration

The finished devices are rectangular bars of 20 × 10µm2 with ground-signal-ground pads for
coplanar waveguide probing. They are placed on the wafer in a grid, with some areas left
unpatterned as control samples for magnetic tests. The geometry forms a coplanar waveguide
with controlled impedance for high-frequency measurements [18]. The ST-FMR setup uses lock-

Figure 5.12: Close-up of the layout for the hall bar and contact pad used specifically for ST-
FMR in [18].

in detection. A microwave generator provides the RF drive modulated at some low frequency,
coupled through a bias tee that also allows DC voltage measurement. The bias tee separates
the high-frequency drive from the low-frequency mixing voltage (the ST-FMR signal). A Hall
probe monitors the magnetic field, while an electromagnet sweeps the DC field.

The key feature is the lock-in amplifier. The microwave source also supplies a low-frequency
modulation reference (tens to hundreds of Hz) to the lock-in, which extracts the weak ST-FMR
mixing voltage from noise. A computer synchronizes the field sweep with data collection to
build the full resonance spectrum.

Angular Geometry and Lock-in Detection Principles

The 45◦ angle between the magnetic field and the current serves two main purposes. It maxi-
mizes anisotropic magnetoresistance sensitivity, since dR/dϕ is largest when the magnetization
is at 45◦ to the current. It also breaks symmetry between torque effects, allowing the symmetric
Lorentzian part (from spin-transfer torque) to be separated from the antisymmetric part (from
Oersted fields) [7].

Lock-in detection modulates the microwave frequency at a low reference (20–200 Hz). This
slightly shifts the resonance, producing a small mixing voltage oscillating at the same frequency.
The lock-in amplifier detects this tiny oscillation while rejecting noise, interference, and drift,
enabling microvolt-level sensitivity to the weak ST-FMR signal.

Technical Implementation and Signal Analysis

The setup needs precise impedance matching and grounding to keep signals clean from DC
to microwave frequencies. The ground-signal-ground probe ensures proper transmission line
behavior, while the bias tee must isolate RF and DC paths over a wide range. Temperature
stability and vibration isolation are critical, since thermal and mechanical noise can hide the
microvolt-level ST-FMR signal.

Data analysis fits the resonance curves with symmetric and antisymmetric Lorentzian terms.
Their ratio gives the spin current efficiency. The same has been discussed in section 5.6.
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